Classical and Quantum Gravity 2012 vol.29 N8

Scalar wormholes with nonminimal derivative coupling

Sushkov S., Korolev R. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

We consider static spherically symmetric wormhole configurations in a gravitational theory of a scalar field with a potential V() and nonminimal derivative coupling to the curvature described by the term ($\epsilon g \mu \nu + \kappa G \mu \nu$) ϕ , $\mu \phi \nu$ in the action. We show that the flare-out conditions providing the geometry of a wormhole throat could be fulfilled both if $\epsilon = -1$ (phantom scalar) and $\epsilon = +1$ (ordinary scalar). Supposing additionally a traversability, we construct numerical solutions describing traversable wormholes in the model with arbitrary κ , $\epsilon = -1$ and V(ϕ) = 0 (no potential). The traversability assumes that the wormhole possesses two asymptotically flat regions with corresponding Schwarzschild masses. We find that asymptotical masses of a wormhole with nonminimal derivative coupling could be positive and/or negative depending on κ . In particular, both masses are positive only provided $\kappa < \kappa 1 \le 0$; otherwise, one or both wormhole masses are negative. In conclusion, we give qualitative arguments that a wormhole configuration with positive masses could be stable. © 2012 IOP Publishing Ltd.

http://dx.doi.org/10.1088/0264-9381/29/8/085008