73 research outputs found

    Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    Get PDF
    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions

    Assessing the biomineralization processes in the shell layers of modern brachiopods from oxygen isotopic composition and elemental ratios: Implications for their use as paleoenvironmental proxies

    Get PDF
    Fossil brachiopod shells are often used as valuable archives to reconstruct paleoenvironmental conditions in deep time. However, biomineralization processes can impact their fidelity as geochemical proxies. Brachiopod shells comprise an outer primary layer, a secondary fibrous layer and sometimes, a tertiary columnar layer. Therefore, it is essential to assess the potential effects of the biomineralization processes in each of the different shell microstructures of modern brachiopods. This study analyses the oxygen isotopic composition together with Li/Ca, Na/Ca Mg/Ca and Sr/Ca data at high spatial (20-50 μm) resolution in seven modern brachiopod species, focusing on differences between the primary, secondary and tertiary layers. In all studied species, δ18O values of the outer primary layer are consistently out of equilibrium with seawater. Also, this shell layer is enriched in Li, Na, Mg and Sr. Contrary to the primary layer, the innermost secondary layer is near or at oxygen isotopic and elemental equilibrium with ambient seawater. The columnar tertiary shell layer, if present, has the least variable and the heaviest oxygen isotopic composition, within the range of equilibrium values with seawater. This tertiary layer, however, is depleted in minor and trace elements relative to the other shell layers. Thus, the tertiary layer is more suitable for oxygen isotopic studies, whereas the innermost secondary layer of the most mature parts of the shell is the best target in two-layered shells. While we do not observe any clear interspecific relationships between Mg/Ca and Sr/Ca ratios, on one hand, and environmental parameters such as temperature, salinity and pH, on the other hand, there is a positive interspecific relationship between Na/Ca and salinity and a negative interspecific relationship between Li/Ca and temperature, suggesting their potential use as proxies of physicochemical parameters of seawater

    Boron isotope systematics of cultured brachiopods : Response to acidification, vital effects and implications for palaeo-pH reconstruction

    Get PDF
    This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 643084 (BASE-LiNE Earth), and was also supported by the collaborative research initiative CHARON (DFG Forschergruppe 1644- Phase II) funded by the German Research Foundation (DFG).CO 2 -induced ocean acidification and associated decrease of seawater carbonate saturation state contributed to multiple environmental crises in Earth's history, and currently poses a major threat for marine calcifying organisms. Owing to their high abundance and good preservation in the Phanerozoic geological record, brachiopods present an advantageous taxon of marine calcifiers for palaeo-proxy applications as well as studies on biological mechanism to cope with environmental change. To investigate the geochemical and physiological responses of brachiopods to prolonged low-pH conditions we cultured Magellania venosa, Terebratella dorsata and Pajaudina atlantica under controlled experimental settings over a period of more than two years. Our experiments demonstrate that brachiopods form their calcite shells under strong biological control, which enables them to survive and grow under low-pH conditions and even in seawater strongly undersaturated with respect to calcite (pH = 7.35, Ω cal = 0.6). Using boron isotope (δ 11 B) systematics including MC-ICP-MS as well as SIMS analyses, validated against in vivo microelectrode measurements, we show that this resilience is achieved by strict regulation of the calcifying fluid pH between the epithelial mantle and the shell. We provide a culture-based δ 11 B−pH calibration, which as a result of the internal pH regulatory mechanisms deviates from the inorganic borate ion to pH relationship, but confirms a clear yet subtle pH dependency for brachiopods. At a micro-scale level, the incorporation of boron appears to be principally driven by a physiological gradient across the shell, where the δ 11 B values of the innermost calcite record the internal calcifying fluid pH while the composition of the outermost layers is also influenced by seawater pH. These findings are of consequence to studies on biomineralisation processes, physiological adaptations as well as past climate reconstructions.Publisher PDFPeer reviewe

    In Situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): Evidence for early microbial iron reduction

    Get PDF
    International audienceOn the basis of phylogenetic studies and laboratory cultures, it has been proposed that the ability of microbes to metabolize iron has emerged prior to the Archaea/ Bacteria split. However, no unambiguous geochemical data supporting this claim have been put forward in rocks older than 2.7-2.5 giga years (Gyr). In the present work, we report in situ Fe and S isotope composition of pyrite from 3.28-to 3.26-Gyr-old cherts from the upper Mendon Formation, South Africa. We identified three populations of microscopic pyrites showing a wide range of Fe isotope compositions, which cluster around two δ 56 Fe values of −1.8‰ and +1‰. These three pyrite groups can also be distinguished based on the pyrite crystallinity and the S isotope mass-independent signatures. One pyrite group displays poorly crystallized pyrite minerals with positive Δ 33 S values > +3‰, while the other groups display more variable and closer to 0‰ Δ 33 S values with recrystallized pyrite rims. It is worth to note that all the pyrite groups display positive Δ 33 S values in the pyrite core and similar trace element compositions

    Incorporation of boron isotopes into brachiopod shell calcite: implications for paleo-pH reconstructions

    Get PDF
    The boron isotope (δ11B) composition of marine calcifiers is considered to be one of the most reliable pH proxies, enabling us to reconstruct past ocean pH and infer on the associated changes in carbon budget involved (e.g. Gut- jahr et al. 2017). The application of the commonly used δ 11 B archives such as foraminifera or corals is however mostly limited to the Cenozoic due to insufficient preservation or incomplete geological records. Brachiopods have a promising potential for extending our knowledge on seawater pH evolution throughout the entire Phanerozoic considering their high abundance in the fossil record and its origin dating back to the early Cambrian. Moreover, their shell is composed of low-magnesium calcite, rendering brachiopods more resistant to post-depositional di-magenetic alteration of its primary chemical signal (e.g. Brand et al. 2012). Additionally, even today they present an extant and widespread taxa, allowing for an assessment of the controls on boron isotope incorporation into brachiopod calcite and possible distortions of the signal due to vital effects or other processes. We present a detailed exploration of boron isotope systematics in three different brachiopod species (Magellania venosa, Terebratella dorsata, Pajaudina atlantica) cultured under controlled laboratory settings for over a year. Our experimental setup includes a control (pH = 8.15) and two pH treatments (pH = 7.6 and 7.35), and we provide both bulk MC-ICP-MS as well as high spatial resolution SIMS data of the shell material. Our results indicate that boron incorporation is primarily driven by vital effects related to their ability to regulate calcifying fluid pH in response to ambient changes, which we further validate by in vivo microelectrode measurements (e.g. Stumpp et al. 2012). Despite internal buffering, the local pH at calcification sites systematically decreases with seawater pH, and hence is impacted by ocean acidification. This not only suggests that brachiopod shells serve as useful and conservative recorders of past ocean pH trends, but also provides new insights into mechanisms that may have enabled brachiopod survival throughout several major environmental crises in the past. Our findings have implications for past climate studies, as well as research on calcification processes and physio- logical adaptations to environmental change (e.g. the actual global ocean acidification). Brand, U., Posenato, R., Came, R., Affek, H., Angiolini, L., Azmy, K. and Farabegoli, E., 2012. The end-Permian mass extinction: A rapid volcanic CO2 and CH4-climatic catastrophe, Chem. Geol. 323, 121-144. Gutjahr M., Ridgewell A., Sexton P.F., Anagnostou E., Pearson P.N., Pälike H., Norris R.D., Thomas E., and Foster G.L., 2017. Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum, Nature 548, 573-577. Stumpp M., Hu M.Y., Melzner F., Gutowska M., Dorey N., Himmerkus N., Holtmann W.C., Dupont S.T., Thorndyke M.C., and Bleich M. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification, PNAS 44: 18192-18197

    Standards for Libraries in Higher Education

    Get PDF
    The Standards for Libraries in Higher Education are designed to guide academic libraries in advancing and sustaining their role as partners in educating students, achieving their institutions’ missions, and positioning libraries as leaders in assessment and continuous improvement on their campuses. Libraries must demonstrate their value and document their contributions to overall institutional effectiveness and be prepared to address changes in higher education. These Standards were developed through study and consideration of new and emerging issues and trends in libraries, higher education, and accrediting practices. These Standards differ from previous versions by articulating expectations for library contributions to institutional effectiveness. These Standards differ structurally by providing a comprehensive framework using an outcomes-based approach, with evidence collected in ways most appropriate for each institution
    corecore