3,472 research outputs found
Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data
Background. Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. Methodology/Principal Findings. We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. Conclusions/Significance. Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling
Tailoring Gold Nanoparticle Characteristics and the Impact on Aqueous-Phase Oxidation of Glycerol
Poly(vinyl alcohol) (PVA)-stabilized Au nanoparticles (NPs) were synthesized by colloidal methods in which temperature variations (−75 to 75 °C) and mixed H2O/EtOH solvent ratios (0, 50, and 100 vol/vol) were used. The resulting Au NPs were immobilized on TiO2 (P25), and their catalytic performance was investigated for the liquid phase oxidation of glycerol. For each unique solvent system, there was a systematic increase in the average Au particle diameter as the temperature of the colloidal preparation increased. Generation of the Au NPs in H2O at 1 °C resulted in a high observed activity compared with current Au/TiO2 catalysts (turnover frequency = 915 h–1). Interestingly, Au catalysts with similar average particle sizes but prepared under different conditions had contrasting catalytic performance. For the most active catalyst, aberration-corrected high angle annular dark field scanning transmission electron microscopy analysis identified the presence of isolated Au clusters (from 1 to 5 atoms) for the first time using a modified colloidal method, which was supported by experimental and computational CO adsorption studies. It is proposed that the variations in the populations of these species, in combination with other solvent/PVA effects, is responsible for the contrasting catalytic properties
Telecare motivational interviewing for diabetes patient education and support : a randomised controlled trial based in primary care comparing nurse and peer supporter delivery
Background: There is increasing interest in developing peer-led and 'expert patient'-type interventions, particularly to meet the support and informational needs of those with long term conditions, leading to improved clinical outcomes, and pressure relief on mainstream health services. There is also increasing interest in telephone support, due to its greater accessibility and potential availability than face to face provided support. The evidence base for peer telephone interventions is relatively weak, although such services are widely available as support lines provided by user groups and other charitable services.
Methods/Design: In a 3-arm RCT, participants are allocated to either an intervention group with Telecare service provided by a Diabetes Specialist Nurse (DSN), an intervention group with service provided by a peer supporter (also living with diabetes), or a control group receiving routine care only. All supporters underwent a 2-day training in motivational interviewing, empowerment and active listening skills to provide telephone support over a period of up to 6 months to adults with poorly controlled type 2 diabetes who had been recommended a change in diabetes management (i.e. medication and/or lifestyle
changes) by their general practitioner (GP). The primary outcome is self-efficacy; secondary outcomes include HbA1c, total and HDL cholesterol, blood pressure, body mass index, and adherence to treatment. 375 participants (125 in each arm) were sought from GP practices across West Midlands, to detect a difference in self-efficacy scores with an effect size of 0.35, 80% power, and 5% significance level. Adults
living with type 2 diabetes, with an HbA1c > 8% and not taking insulin were initially eligible. A protocol
change 10 months into the recruitment resulted in a change of eligibility by reducing HbA1c to > 7.4%. Several qualitative studies are being conducted alongside the main RCT to describe patient, telecare supporter and practice nurse experience of the trial.
Discussion and implications of the research: With its focus on self-management and telephone peer support, the intervention being trialled has the potential to support improved self-efficacy and patient experience, improved clinical outcomes and a reduction in diabetes-related complications
Sr-Nd isotope geochemistry of the early Precambrian sub-alkaline mafic igneous rocks from the southern Bastar craton, Central India
Sr–Nd isotope data are reported for the early Precambrian sub-alkaline mafic igneous rocks of the southern Bastar craton, central India. These mafic rocks are mostly dykes but there are a few volcanic exposures. Field relationships together with the petrological and geochemical characteristics of these mafic dykes divide them into two groups; Meso-Neoarchaean sub-alkaline mafic dykes (BD1) and Paleoproterozoic (1.88 Ga) sub-alkaline mafic dykes (BD2). The mafic volcanics are Neoarchaean in age and have very close geochemical relationships with the BD1 type. The two groups have distinctly different concentrations of high-field strength (HFSE) and rare earth elements (REE). The BD2 dykes have higher concentrations of HFSE and REE than the BD1 dykes and associated volcanics and both groups have very distinctive petrogenetic histories. These rocks display a limited range of initial 143Nd/144Nd but a wide range of apparent initial 87Sr/86Sr. Initial 143Nd/144Nd values in the BD1 dykes and associated volcanics vary between 0.509149 and 0.509466 and in the BD2 dykes the variation is between 0.510303 and 0.510511. All samples have positive εNd values the BD1 dykes and associated volcanics have εNd values between +0.3 and +6.5 and the BD2 dykes between +1.9 to +6.0. Trace element and Nd isotope data do not suggest severe crustal contamination during the emplacement of the studied rocks. The positive εNd values suggest their derivation from a depleted mantle source. Overlapping positive εNd values suggest that a similar mantle source tapped by variable melt fractions at different times was responsible for the genesis of BD1 (and associated volcanics) and BD2 mafic dykes. The Rb–Sr system is susceptible to alteration and resetting during post-magmatic alteration and metamorphism. Many of the samples studied have anomalous apparent initial 87Sr/86Sr suggesting post-magmatic changes of the Rb–Sr system which severely restricts the use of Rb–Sr for petrogenetic interpretation
An analysis of observed daily maximum wind gusts in the UK
The greatest attention to the UK wind climatology has focused upon mean windspeeds, despite a knowledge of gust speeds being essential to a variety of users. This paper goes some way to redressing this imbalance by analysing observed daily maximum gust speeds from a 43-station network over the period 1980–2005. Complementing these data are dynamically downscaled reanalysis data, generated using the PRECIS Regional Climate Modelling system, for the period 1959–2001. Inter-annual variations in both the observed and downscaled reanalysis gust speeds are presented, with a statistically significant (at the 95% confidence interval) 5% increase across the network in daily maximum gust speeds between 1959 and the early 1990s, followed by an apparent decrease. The benefit of incorporating dynamically downscaled reanalysis data is revealed by the fact that the decrease in gust speeds since 1993 may be placed in the context of a very slight increase displayed over the longer 1959–2001 period. Furthermore, the severity of individual windstorm events is considered, with high profile recent events placed into the context of the long term record. A daily cycle is identified from the station observations in the timing of the daily maximum gust speeds, with an afternoon peak occurring between 12:00–15:00, exhibiting spatial and intra-annual variations
Minimal Intervention Needed for Change: Definition, Use, and Value for Improving Health and Health Research
Much research focuses on producing maximal intervention effects. This has generally not resulted in interventions being rapidly or widely adopted or seen as feasible given resources, time, and expertise constraints in the majority of real-world settings. We present a definition and key characteristics of a minimum intervention needed to produce change (MINC). To illustrate use of a MINC condition, we describe a computer-assisted, interactive minimal intervention, titled Healthy Habits, used in three different controlled studies and its effects. This minimal intervention produced modest to sizable health behavior and psychosocial improvements, depending on the intensity of personal contacts, producing larger effects at longer-term assessments. MINC comparison conditions could help to advance both health care and health research, especially comparative effectiveness research. Policy and funding implications of requiring an intervention to be demonstrated more effective than a simpler, less costly MINC alternative are discussedYe
The filtering equations revisited
The problem of nonlinear filtering has engendered a surprising number of
mathematical techniques for its treatment. A notable example is the
change-of--probability-measure method originally introduced by Kallianpur and
Striebel to derive the filtering equations and the Bayes-like formula that
bears their names. More recent work, however, has generally preferred other
methods. In this paper, we reconsider the change-of-measure approach to the
derivation of the filtering equations and show that many of the technical
conditions present in previous work can be relaxed. The filtering equations are
established for general Markov signal processes that can be described by a
martingale-problem formulation. Two specific applications are treated
The GAPS Experiment to Search for Dark Matter using Low-energy Antimatter
The GAPS experiment is designed to carry out a sensitive dark matter search
by measuring low-energy cosmic ray antideuterons and antiprotons. GAPS will
provide a new avenue to access a wide range of dark matter models and masses
that is complementary to direct detection techniques, collider experiments and
other indirect detection techniques. Well-motivated theories beyond the
Standard Model contain viable dark matter candidates which could lead to a
detectable signal of antideuterons resulting from the annihilation or decay of
dark matter particles. The dark matter contribution to the antideuteron flux is
believed to be especially large at low energies (E < 1 GeV), where the
predicted flux from conventional astrophysical sources (i.e. from secondary
interactions of cosmic rays) is very low. The GAPS low-energy antiproton search
will provide stringent constraints on less than 10 GeV dark matter, will
provide the best limits on primordial black hole evaporation on Galactic length
scales, and will explore new discovery space in cosmic ray physics.
Unlike other antimatter search experiments such as BESS and AMS that use
magnetic spectrometers, GAPS detects antideuterons and antiprotons using an
exotic atom technique. This technique, and its unique event topology, will give
GAPS a nearly background-free detection capability that is critical in a
rare-event search. GAPS is designed to carry out its science program using
long-duration balloon flights in Antarctica. A prototype instrument was
successfully flown from Taiki, Japan in 2012. GAPS has now been approved by
NASA to proceed towards the full science instrument, with the possibility of a
first long-duration balloon flight in late 2020. Here we motivate low-energy
cosmic ray antimatter searches and discuss the current status of the GAPS
experiment and the design of the payload.Comment: 8 pags, 3 figures, Proc. 35th International Cosmic Ray Conference
(ICRC 2017), Busan, Kore
- …