57 research outputs found

    Mutations in CNNM4 Cause Jalili Syndrome, Consisting of Autosomal-Recessive Cone-Rod Dystrophy and Amelogenesis Imperfecta

    Get PDF
    The combination of recessively inherited cone-rod dystrophy (CRD) and amelogenesis imperfecta (AI) was first reported by Jalili and Smith in 1988 in a family subsequently linked to a locus on chromosome 2q11, and it has since been reported in a second small family. We have identified five further ethnically diverse families cosegregating CRD and AI. Phenotypic characterization of teeth and visual function in the published and new families reveals a consistent syndrome in all seven families, and all link or are consistent with linkage to 2q11, confirming the existence of a genetically homogenous condition that we now propose to call Jalili syndrome. Using a positional-candidate approach, we have identified mutations in the CNNM4 gene, encoding a putative metal transporter, accounting for the condition in all seven families. Nine mutations are described in all, three missense, three terminations, two large deletions, and a single base insertion. We confirmed expression of Cnnm4 in the neural retina and in ameloblasts in the developing tooth, suggesting a hitherto unknown connection between tooth biomineralization and retinal function. The identification of CNNM4 as the causative gene for Jalili syndrome, characterized by syndromic CRD with AI, has the potential to provide new insights into the roles of metal transport in visual function and biomineralization

    Evaluation Research and Institutional Pressures: Challenges in Public-Nonprofit Contracting

    Get PDF
    This article examines the connection between program evaluation research and decision-making by public managers. Drawing on neo-institutional theory, a framework is presented for diagnosing the pressures and conditions that lead alternatively toward or away the rational use of evaluation research. Three cases of public-nonprofit contracting for the delivery of major programs are presented to clarify the way coercive, mimetic, and normative pressures interfere with a sound connection being made between research and implementation. The article concludes by considering how public managers can respond to the isomorphic pressures in their environment that make it hard to act on data relating to program performance.This publication is Hauser Center Working Paper No. 23. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers

    Spectrum of PEX1 and PEX6 variants in Heimler syndrome

    No full text
    Heimler syndrome (HS) consists of recessively inherited sensorineural hearing loss, amelogenesis imperfecta (AI) and nail abnormalities, with or without visual defects. Recently HS was shown to result from hypomorphic mutations in PEX1 or PEX6, both previously implicated in Zellweger Syndrome Spectrum Disorders (ZSSD). ZSSD are a group of conditions consisting of craniofacial and neurological abnormalities, sensory defects and multi-organ dysfunction. The finding of HS-causing mutations in PEX1 and PEX6 shows that HS represents the mild end of the ZSSD spectrum, though these conditions were previously thought to be distinct nosological entities. Here, we present six further HS families, five with PEX6 variants and one with PEX1 variants, and show the patterns of Pex1, Pex14 and Pex6 immunoreactivity in the mouse retina. While Ratbi et al. found more HS-causing mutations in PEX1 than in PEX6, as is the case for ZSSD, in this cohort PEX6 variants predominate, suggesting both genes play a significant role in HS. The PEX6 variant c.1802G>A, p.(R601Q), reported previously in compound heterozygous state in one HS and three ZSSD cases, was found in compound heterozygous state in three HS families. Haplotype analysis suggests a common founder variant. All families segregated at least one missense variant, consistent with the hypothesis that HS results from genotypes including milder hypomorphic alleles. The clinical overlap of HS with the more common Usher syndrome and lack of peroxisomal abnormalities on plasma screening suggest that HS may be under-diagnosed. Recognition of AI is key to the accurate diagnosis of HS

    Mutations in the pH-Sensing G-protein-Coupled Receptor GPR68 Cause Amelogenesis Imperfecta

    Get PDF
    Amelogenesis is the process of dental enamel formation, leading to the deposition of the hardest tissue in the human body. This process requires the intricate regulation of ion transport and controlled changes to the developing enamel matrix pH. The means by which the enamel organ regulates pH during amelogenesis is largely unknown. We identified rare homozygous variants in GPR68 in three families with Amelogenesis Imperfecta, a genetically and phenotypically heterogeneous group of inherited conditions associated with abnormal enamel formation. Each of these homozygous variants (a large in-frame deletion, a frameshift deletion and a missense) were predicted to result in loss of function. GPR68 encodes a proton sensing G-protein-coupled receptor with sensitivity in the pH range that occurs in the developing enamel matrix during amelogenesis. Immunohistochemistry of rat mandibles confirmed localisation of GPR68 in the enamel organ at all stages of amelogenesis. Our data identify a role for GPR68 as a proton sensor that is required for proper enamel formation

    Mutations in the Beta Propeller WDR72 Cause Autosomal-Recessive Hypomaturation Amelogenesis Imperfecta

    Get PDF
    Healthy dental enamel is the hardest and most highly mineralized human tissue. Though acellular, nonvital, and without capacity for turnover or repair, it can nevertheless last a lifetime. Amelogenesis imperfecta (AI) is a collective term for failure of normal enamel development, covering diverse clinical phenotypes that typically show Mendelian inheritance patterns. One subset, known as hypomaturation AI, is characterised by near-normal volumes of organic enamel matrix but with weak, creamy-brown opaque enamel that fails prematurely after tooth eruption. Mutations in genes critical to enamel matrix formation have been documented, but current understanding of other key events in enamel biomineralization is limited. We investigated autosomal-recessive hypomaturation AI in a consanguineous Pakistani family. A whole-genome SNP autozygosity screen identified a locus on chromosome 15q21.3. Sequencing candidate genes revealed a point mutation in the poorly characterized WDR72 gene. Screening of WDR72 in a panel of nine additional hypomaturation AI families revealed the same mutation in a second, apparently unrelated, Pakistani family and two further nonsense mutations in Omani families. Immunohistochemistry confirmed intracellular localization in maturation-stage ameloblasts. WDR72 function is unknown, but as a putative β propeller is expected to be a scaffold for protein-protein interactions. The nearest homolog, WDR7, is involved in vesicle mobilization and Ca2+-dependent exocytosis at synapses. Vesicle trafficking is important in maturation-stage ameloblasts with respect to secretion into immature enamel and removal of cleaved enamel matrix proteins via endocytosis. This raises the intriguing possibility that WDR72 is critical to ameloblast vesicle turnover during enamel maturation

    Tsunami hazards in the Catalan Coast, a low-intensity seismic activity area

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11069-017-2918-zThe potential impacts of tsunamis along the Catalan Coast (NW Mediterranean) are analysed using numerical modelling. The region is characterized by moderate to low seismic activity and by moderate- to low-magnitude earthquakes. However, the occurrence of historical strong earthquakes and the location of several active offshore faults in front of the coast suggest that the possibility of an earthquake-triggered tsunami is not negligible although of low probability. Up to five faults have been identified to generate tsunamis, being the highest associated possible seismic magnitudes of up to 7.6. Coastal flooding and port agitation are characterized using the Worst-case Credible Tsunami Scenario Analysis approach. The results show a multiple fault source contribution to tsunami hazard. The shelf dimensions and the existence of submerged canyons control the tsunami propagation. In wide shelves, waves travelling offshore may become trapped by refraction causing the wave energy to reach the coastline at some distance from the origin. The free surface water elevation increases at the head of the canyons due to the sharp depth gradients. The effects of potential tsunamis would be very harmful in low-lying coastal stretches, such as deltas, with a high population concentration, assets and infrastructures. The Ebro delta appears to be the most exposed coast, and about the 20% of the delta surface is prone to flooding due to its extremely low-lying nature. The activity at Barcelona port will be severely affected by inflow backflow current at the entrance of up to 2 m/s.Peer ReviewedPostprint (author's final draft

    Mutations in C4orf26, Encoding a Peptide with In Vitro Hydroxyapatite Crystal Nucleation and Growth Activity, Cause Amelogenesis Imperfecta

    Get PDF
    Autozygosity mapping and clonal sequencing of an Omani family identified mutations in the uncharacterized gene, C4orf26, as a cause of recessive hypomineralized amelogenesis imperfecta (AI), a disease in which the formation of tooth enamel fails. Screening of a panel of 57 autosomal-recessive AI-affected families identified eight further families with loss-of-function mutations in C4orf26. C4orf26 encodes a putative extracellular matrix acidic phosphoprotein expressed in the enamel organ. A mineral nucleation assay showed that the protein’s phosphorylated C terminus has the capacity to promote nucleation of hydroxyapatite, suggesting a possible function in enamel mineralization during amelogenesis

    A missense mutation in ITGB6 causes pitted hypomineralized amelogenesis imperfecta

    Get PDF
    We identified a family in which pitted hypomineralized amelogenesis imperfecta (AI) with premature enamel failure segregated in an autosomal recessive fashion. Whole-exome sequencing revealed a missense mutation (c.586C>A, p.P196T) in the I-domain of integrin-beta6 (ITGB6), which is consistently predicted to be pathogenic by all available programmes and is the only variant that segregates with the disease phenotype. Furthermore, a recent study revealed that mice lacking a functional allele of Itgb6 display a hypomaturation AI phenotype. Phenotypic characterization of affected human teeth in this study showed areas of abnormal prismatic organization, areas of low mineral density and severe abnormal surface pitting in the tooth's coronal portion. We suggest that the pathogenesis of this form of AI may be due to ineffective ligand binding of ITGB6 resulting in either compromised cell-matrix interaction or compromised ITGB6 activation of transforming growth factor-beta (TGF-beta) impacting indirectly on ameloblast-ameloblast interactions and proteolytic processing of extracellular matrix proteins via MMP20. This study adds to the list of genes mutated in AI and further highlights the importance of cell-matrix interactions during enamel formation

    Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations

    Get PDF
    Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood

    As Donald Trump has shown, words matter in how voters make political decisions.

    Get PDF
    With his frequent characterizations of his opponents as “lyin” or “crooked”, Donald Trump’s use of language during his 2016 presidential election campaign was a departure from previous contests. In new research, Stephen M. Utych examines the effects of this sort of emotional, negative language on political decision-making. Through experimental studies, he finds that when such language is used in discussing a topic people rate that topic more negatively. He writes that this negativity can also often spill over to those who are using the negative language
    corecore