802 research outputs found

    The effects of charge transfer inefficiency (CTI) on galaxy shape measurements

    Get PDF
    (Abridged) We examine the effects of charge transfer inefficiency (CTI) during CCD readout on galaxy shape measurements required by studies of weak gravitational lensing. We simulate a CCD readout with CTI such as that caused by charged particle radiation damage. We verify our simulations on data from laboratory-irradiated CCDs. Only charge traps with time constants of the same order as the time between row transfers during readout affect galaxy shape measurements. We characterize the effects of CTI on various galaxy populations. We baseline our study around p-channel CCDs that have been shown to have charge transfer efficiency up to an order of magnitude better than several models of n-channel CCDs designed for space applications. We predict that for galaxies furthest from the readout registers, bias in the measurement of galaxy shapes, Delta(e), will increase at a rate of 2.65 +/- 0.02 x 10^(-4) per year at L2 for accumulated radiation exposure averaged over the solar cycle. If uncorrected, this will consume the entire shape measurement error budget of a dark energy mission within about 4 years. Software mitigation techniques demonstrated elsewhere can reduce this by a factor of ~10, bringing the effect well below mission requirements. CCDs with higher CTI than the ones we studeied may not meet the requirements of future dark energy missions. We discuss ways in which hardware could be designed to further minimize the impact of CTI.Comment: 11 pages, 6 figures, and 2 tables. Accepted for publication in PAS

    The Mutual Interaction between Continental-Scale Ice Sheets and Atmospheric Stationary Waves

    Get PDF
    The great continental ice sheets of the Pleistocene represented significant obstacles to the Northern Hemisphere midlatitude westerlies. They must therefore have forced large changes in the atmospheric circulation, and con-sequently also in the patterns of accumulation and melting over the ice sheets themselves. A simplified three-dimensional coupled ice sheet–stationary wave model is developed in order to understand the ice sheet’s response to the circulation changes that it induces. Consistent with ice age climate simulations, the ice sheet topography induces an anticyclonic circulation over the ice sheet, causing a slight warming over the western slopes and a stronger cooling over the remainder. The modeled feedbacks significantly affect the ice sheet configuration, with the most important influences being the patterns of summer temperature, and the topographically induced pre-cipitation field. The time evolution of the ice sheet is also changed by the atmospheric feedbacks and the results suggest the possibility of multiple equilibrium solutions. 1

    A prompt neutrino measurement

    Full text link
    A test has been made to explore the possibility of beam dump neutrino experiments with short target‐detector separations and modest detectors. Results have given a positive neutrino signal which is interpreted in the context of various charmed‐meson production models. A limit to the lifetime and mass of the axion is also a byproduct of this test.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87326/2/246_1.pd

    The host metabolite D-serine contributes to bacterial niche specificity through gene selection

    Get PDF
    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity

    Analysis of SARS-CoV-2 Emergent Variants Following AZD7442 (Tixagevimab/Cilgavimab) for Early Outpatient Treatment of COVID-19 (TACKLE Trial)

    Get PDF
    Introduction: AZD7442 (tixagevimab/cilgavimab) comprises neutralising monoclonal antibodies (mAbs) that bind to distinct non-overlapping epitopes on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Viral evolution during mAb therapy can select for variants with reduced neutralisation susceptibility. We examined treatment-emergent SARS-CoV-2 variants during TACKLE (NCT04723394), a phase 3 study of AZD7442 for early outpatient treatment of coronavirus disease 2019 (COVID-19). // Methods: Non-hospitalised adults with mild-to-moderate COVID-19 were randomised and dosed ≤ 7 days from symptom onset with AZD7442 (n = 452) or placebo (n = 451). Next-generation sequencing of the spike gene was performed on SARS-CoV-2 reverse-transcription polymerase chain reaction-positive nasopharyngeal swabs at baseline and study days 3, 6, and 15 post dosing. SARS-CoV-2 lineages were assigned using spike nucleotide sequences. Amino acid substitutions were analysed at allele fractions (AF; % of sequence reads represented by substitution) ≥ 25% and 3% to 25%. In vitro susceptibility to tixagevimab, cilgavimab, and AZD7442 was evaluated for all identified treatment-emergent variants using a pseudotyped microneutralisation assay. // Results: Longitudinal spike sequences were available for 461 participants (AZD7442, n = 235; placebo, n = 226) and showed that treatment-emergent variants at any time were rare, with 5 (2.1%) AZD7442 participants presenting ≥ 1 substitution in tixagevimab/cilgavimab binding sites at AF ≥ 25%. At AF 3% to 25%, treatment-emergent variants were observed in 15 (6.4%) AZD7442 and 12 (5.3%) placebo participants. All treatment-emergent variants showed in vitro susceptibility to AZD7442. // Conclusion: These data indicate that AZD7442 creates a high genetic barrier for resistance and is a feasible option for COVID-19 treatment

    The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies

    Get PDF
    Recent studies of the northeastern part of the Tibetan Plateau have called attention to two emerging views of how the Tibetan Plateau has grown. First, deformation in northern Tibet began essentially at the time of collision with India, not 10–20 Myr later as might be expected if the locus of activity migrated northward as India penetrated the rest of Eurasia. Thus, the north-south dimensions of the Tibetan Plateau were set mainly by differences in lithospheric strength, with strong lithosphere beneath India and the Tarim and Qaidam basins steadily encroaching on one another as the region between them, the present-day Tibetan Plateau, deformed, and its north-south dimension became narrower. Second, abundant evidence calls for acceleration of deformation, including the formation of new faults, in northeastern Tibet since ~15 Ma and a less precisely dated change in orientation of crustal shortening since ~20 Ma. This reorientation of crustal shortening and roughly concurrent outward growth of high terrain, which swings from NNE-SSW in northern Tibet to more NE-SW and even ENE-WSW in the easternmost part of northeastern Tibet, are likely to be, in part, a consequence of crustal thickening within the high Tibetan Plateau reaching a limit, and the locus of continued shortening then migrating to the northeastern and eastern flanks. These changes in rates and orientation also could result from removal of some or all mantle lithosphere and increased gravitational potential energy per unit area and from a weakening of crustal material so that it could flow in response to pressure gradients set by evolving differences in elevation

    Enhancing Health Through Access to Nature: How Effective are Interventions in Woodlands in Deprived Urban Communities? A Quasi-experimental Study in Scotland, UK.

    Get PDF
    High prevalence of poor mental health is a major public health problem. Natural environments may contribute to mitigating stress and enhancing health. However, there is little evidence on whether community-level interventions intended to increase exposure to natural environments can improve mental health and related behaviours. In the first study of its kind, we evaluated whether the implementation of a programme designed to improve the quality of, and access to, local woodlands in deprived communities in Scotland, UK, was associated with lower perceived stress or other health-related outcomes, using a controlled, repeat cross-sectional design with a nested prospective cohort. Interventions included physical changes to the woodlands and community engagement activities within the woodlands, with data collected at baseline (2013) and post-intervention (2014 and 2015). The interventions were, unexpectedly, associated with increased perceived stress compared to control sites. However, we observed significantly greater increases in stress for those living >500 m from intervention sites. Visits to nearby nature (woods and other green space) increased overall, and moderate physical activity levels also increased. In the intervention communities, those who visited natural environments showed smaller increases in stress than those who did not; there was also some evidence of increased nature connectedness and social cohesion. The intervention costs were modest but there were no significant changes in quality of life on which to base cost-effectiveness. Findings suggest factors not captured in the study may have contributed to the perceived stress patterns found. Wider community engagement and longer post-intervention follow-up may be needed to achieve significant health benefits from woodland interventions such as those described here. The study points to the challenges in evidencing the effectiveness of green space and forestry interventions to enhance health in urban environments, but also to potential benefits from more integrated approaches across health and landscape planning and management practice

    The SDSS-III Baryon Oscillation Spectroscopic Survey: Quasar Target Selection for Data Release Nine

    Full text link
    The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg^2, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations in the distribution of Ly-alpha absorption from the spectra of a sample of ~150,000 z>2.2 quasars. Along with measuring the angular diameter distance at z\approx2.5, BOSS will provide the first direct measurement of the expansion rate of the Universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithm for quasars over 2.2 < z < 3.5, where their colors overlap those of stars. During the first year of the BOSS survey, quasar target selection methods were developed and tested to meet the requirement of delivering at least 15 quasars deg^-2 in this redshift range, out of 40 targets deg^-2. To achieve these surface densities, the magnitude limit of the quasar targets was set at g <= 22.0 or r<=21.85. While detection of the BAO signature in the Ly-alpha absorption in quasar spectra does not require a uniform target selection, many other astrophysical studies do. We therefore defined a uniformly-selected subsample of 20 targets deg^-2, for which the selection efficiency is just over 50%. This "CORE" subsample will be fixed for Years Two through Five of the survey. In this paper we describe the evolution and implementation of the BOSS quasar target selection algorithms during the first two years of BOSS operations. We analyze the spectra obtained during the first year. 11,263 new z>2.2 quasars were spectroscopically confirmed by BOSS. Our current algorithms select an average of 15 z > 2.2 quasars deg^-2 from 40 targets deg^-2 using single-epoch SDSS imaging. Multi-epoch optical data and data at other wavelengths can further improve the efficiency and completeness of BOSS quasar target selection. [Abridged]Comment: 33 pages, 26 figures, 12 tables and a whole bunch of quasars. Submitted to Ap

    Results from a Fermilab neutrino beam dump experiment

    Full text link
    The flux of prompt neutrinos from a beam dump has been measured in an experiment at the Fermi National Accelerator Laboratory (E613). Assuming that the charm production has a linear dependence on atomic number and varies as (1−‖×‖)5 e−2mT, a model dependent cross section of 27±5μb/nucleon can be derived. For neutrino energies greater than 20 GeV, the flux of electron neutrinos with respect to muon neutrinos is 0.78±0.19. For neutrinos with energy greater than 30 GeV and p⟂ greater than 0.2, the flux of ν̄u compared to νμ is 0.96±0.22.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87363/2/100_1.pd
    corecore