2,982 research outputs found

    The InfraRed Imaging Spectrograph (IRIS) for TMT: latest science cases and simulations

    Full text link
    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.Comment: 15 pages, 7 figures, SPIE (2016) 9909-0

    Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines

    Get PDF
    We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2

    TESS Discovery of a Transiting Super-Earth in the π\pi Mensae System

    Full text link
    We report the detection of a transiting planet around π\pi Mensae (HD 39091), using data from the Transiting Exoplanet Survey Satellite (TESS). The solar-type host star is unusually bright (V=5.7) and was already known to host a Jovian planet on a highly eccentric, 5.7-year orbit. The newly discovered planet has a size of 2.04±0.052.04\pm 0.05 R⊕R_\oplus and an orbital period of 6.27 days. Radial-velocity data from the HARPS and AAT/UCLES archives also displays a 6.27-day periodicity, confirming the existence of the planet and leading to a mass determination of 4.82±0.854.82\pm 0.85 M⊕M_\oplus. The star's proximity and brightness will facilitate further investigations, such as atmospheric spectroscopy, asteroseismology, the Rossiter--McLaughlin effect, astrometry, and direct imaging.Comment: Accepted for publication ApJ Letters. This letter makes use of the TESS Alert data, which is currently in a beta test phase. The discovery light curve is included in a table inside the arxiv submissio

    Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I:Wet lab procedure

    Get PDF
    Metagenomic high-throughput sequencing (mHTS) is a hypothesis-free, universal pathogen detection technique for determination of the DNA/RNA sequences in a variety of sample types and infectious syndromes. mHTS is still in its early stages of translating into clinical application. To support the development, implementation and standardization of mHTS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established. The aim of ENNGS is to bring together professionals involved in mHTS for viral diagnostics to share methodologies and experiences, and to develop application recommendations. This manuscript aims to provide practical recommendations for the wet lab procedures necessary for implementation of mHTS for virus diagnostics and to give recommendations for development and validation of laboratory methods, including mHTS quality assurance, control and quality assessment protocols

    Extraction and Inhibition of Enzymatic Activity of Botulinum Neurotoxins/A1, /A2, and /A3 by a Panel of Monoclonal Anti-BoNT/A Antibodies

    Get PDF
    Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing death or respiratory failure leading to long-term intensive care. Treatment includes serotype-specific antitoxins, which must be administered early in the course of the intoxication. Rapidly determining human exposure to BoNT is an important public health goal. In previous work, our laboratory focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating BoNT/A–G serotypes in buffer and BoNT/A, /B, /E, and /F in clinical samples. We have previously reported the effectiveness of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. Because some antibodies inhibit or neutralize the activity of BoNT, the choice of antibody with which to extract the toxin is critical. In this work, we evaluated a panel of 16 anti-BoNT/A monoclonal antibodies (mAbs) for their ability to inhibit the in vitro activity of BoNT/A1, /A2, and /A3 complex as well as the recombinant LC of A1. We also evaluated the same antibody panel for the ability to extract BoNT/A1, /A2, and /A3. Among the mAbs, there were significant differences in extraction efficiency, ability to extract BoNT/A subtypes, and inhibitory effect on BoNT catalytic activity. The mAbs binding the C-terminal portion of the BoNT/A heavy chain had optimal properties for use in the Endopep-MS assay

    Working with argan cake: a new etiology for hypersensitivity pneumonitis

    No full text
    International audienceAbstractBackgroundArgan is now used worldwide in numerous cosmetic products. Nine workers from a cosmetic factory were examined in our occupational medicine department, following the diagnosis of a case of hypersensitivity pneumonitis (HP) related to handling of argan cakes.MethodsOperators were exposed to three forms of argan (crude granulates, powder or liquid) depending on the step of the process. All workers systematically completed standardized questionnaires on occupational and medical history, followed by medical investigations, comprising, in particular, physical examination and chest X-rays, total IgE and a systematic screening for specific serum antibodies directed against the usual microbial agents of domestic and farmer’s HP and antigens derived from microbiological culture and extracts of various argan products. Subjects with episodes of flu-like syndrome several hours after handling argan cakes, were submitted to a one-hour challenge to argan cakes followed by physical examination, determination of Carbon Monoxide Diffusing Capacity (DLCO) and chest CT-scan on day 2, and, when necessary, bronchoalveolar lavage on day 4.ResultsSix of the nine workers experienced flu-like symptoms within 8 hours after argan handling. After challenge, two subjects presented a significant decrease of DLCO and alveolitis with mild lymphocytosis, and one presented ground glass opacities. These two patients and another patient presented significant arcs to both granulates and non-sterile powder. No reactivity was observed to sterile argan finished product, antigens derived from argan cultures (various species of Bacillus) and Streptomyces marokkonensis (reported in the literature to contaminate argan roots).ConclusionsWe report the first evidence of hypersensitivity pneumonitis related to argan powder in two patients. This implies preventive measures to reduce their exposure and clinical survey to diagnose early symptoms. As exposure routes are different and antibodies were observed against argan powder and not the sterile form, consumers using argan-based cosmetics should not be concerned

    Global Description of EUSO-Balloon Instrument

    Get PDF
    For the JEM-EUSO CollaborationThe EUSO-Balloon is a pathfinder of the JEM-EUSO mission, designed to be installed on-board the International Space Station before the end of this decade. The EUSO-Balloon instrument, conceived as a scaleddown version of the main mission, is currently developed as a payload of a stratospheric balloon operated by CNES, and will, most likely, be launched during the CNES flight campaign in 2014. Several key elements of JEM-EUSO have been implemented in the EUSO-Balloon. The instrument consists of an UV telescope, made of three Fresnel lenses, designed to focus the signal of the UV tracks, generated by highly energetic cosmic rays propagating in the earth's atmosphere, onto a finely pixelized UV camera. In this contribution, we review the main stages of the signal processing of the EUSO-Balloon instrument: the photodetection, the analog electronics, the trigger stages, which select events while rejecting random background, the acquisition system performing data storage and the monitoring, which allows the instrument control during operation

    Spleen-Resident CD4+ and CD4− CD8α− Dendritic Cell Subsets Differ in Their Ability to Prime Invariant Natural Killer T Lymphocytes

    Get PDF
    One important function of conventional dendritic cells (cDC) is their high capacity to capture, process and present Ag to T lymphocytes. Mouse splenic cDC subtypes, including CD8α+ and CD8α− cDC, are not identical in their Ag presenting and T cell priming functions. Surprisingly, few studies have reported functional differences between CD4− and CD4+ CD8α− cDC subsets. We show that, when loaded in vitro with OVA peptide or whole protein, and in steady-state conditions, splenic CD4− and CD4+ cDC are equivalent in their capacity to prime and direct CD4+ and CD8+ T cell differentiation. In contrast, in response to α-galactosylceramide (α-GalCer), CD4− and CD4+ cDC differentially activate invariant Natural Killer T (iNKT) cells, a population of lipid-reactive non-conventional T lymphocytes. Both cDC subsets equally take up α-GalCer in vitro and in vivo to stimulate the iNKT hybridoma DN32.D3, the activation of which depends solely on TCR triggering. On the other hand, and relative to their CD4+ counterparts, CD4− cDC more efficiently stimulate primary iNKT cells, a phenomenon likely due to differential production of co-factors (including IL-12) by cDC. Our data reveal a novel functional difference between splenic CD4+ and CD4− cDC subsets that may be important in immune responses
    • …
    corecore