869 research outputs found

    Short communication: Use of calcium sulphate dihydrate as an alternative to the conventional use of aluminium sulphate in the primary treatment of wastewater

    Get PDF
    The application of calcium sulphate dihydrate (CaSO4.2H2O) as a coagulant-flocculant alternative to the conventional use of aluminium sulphate in the primary treatment of wastewater was evaluated using a jar test apparatus. Samples from the State Water Commission (CEA) in Queretaro, Mexico, were collected for the experiments. Turbidity and pH were measured before and after applying the calcium sulphate dihydrate (CaSO4.2H2O). Turbidity readings obtained for the doses of 4 gE.-1 of aluminium sulphate varied from 3.91 to 3.87. The corresponding water pH was 3.90, giving the water an acidic character. Use of aluminium sulphate in the clarification of wastewater, thus, has financial and environmental implications due to the need to raise the pH of the treated water to 6.5.8.5, the recommended optimum interval for the physical-chemical-biological removal of pollutants. By contrast, calcium sulphate di-hydrate (CaSO4E2H2O) (gypsum) doses of 1, 1.5 and 2 gE.-1 resulted in a pH of between 7.04 and 7.51 repeatedly. These findings suggest that the application of calcium sulphate di-hydrate (CaSO4.2H2O) as coagulant-flocculant, followed by the process of sedimentation, may be a suitable alternative for the clarification of wastewater. However, the turbidity reported for the same doses was 74.05, 80.5 and 74.5 NTU, respectively, well above the international standard of 5 NTU. The effect of gypsum on turbidity warrants further research

    NSAID Use Selectively Increases the Risk of Non-Fatal Myocardial Infarction: A Systematic Review of Randomised Trials and Observational Studies

    Get PDF
    Recent clinical trials and observational studies have reported increased coronary events associated with non steroidal anti-inflammatory drugs (NSAIDs). There appeared to be a disproportionate increase in non-fatal versus fatal events, however, numbers of fatal events in individual studies were too small, and event rates too low, to be meaningful.We undertook a pooled analysis to investigate the effect of NSAIDs on myocardial infarction (MI) risk with the specific aim to differentiate non-fatal from fatal events.We searched Pubmed (January, 1990 to March, 2010) for observational studies and randomised controlled trials that assessed the effect of NSAIDs (traditional or selective COX-2 inhibitors [coxibs]) on MI incidence separately for fatal and non-fatal events. Summary estimates of relative risk (RR) for non-fatal and fatal MIs were calculated with a random effects model.NSAID therapy carried a RR of 1.30 (95% CI, 1.20-1.41) for non-fatal MI with no effect on fatal MI (RR 1.02, 95% CI, 0.89-1.17) in six observational studies. Overall, the risk increase for non-fatal MI was 25% higher (95% CI, 11%-42%) than for fatal MI. The two studies that included only individuals with prior cardiovascular disease presented risk estimates for non-fatal MI on average 58% greater (95% CI, 26%-98%) than those for fatal MI. In nine randomised controlled trials, all investigating coxibs, the pooled RR estimate for non-fatal MI was 1.61 (95% CI, 1.04-2.50) and 0.86 (95% CI 0.51-1.47) for fatal MIs.NSAID use increases the risk of non-fatal MI with no substantial effect on fatal events. Such differential effects, with potentially distinct underlying pathology may provide insights into NSAID-induced coronary pathology. We studied the association between the use of nonsteroidal anti-inflammatory drugs (NSAIDs) and the risk of myocardial infarction (MI), separating non-fatal from fatal events, summarizing the evidence from both observational studies and randomised controlled trials. An increased risk of non-fatal MI was clearly found in both types of studies while use of NSAID did not confer an increased risk of fatal MI. Our findings provide support for the concept that thrombi generated under NSAID treatment could be different from spontaneous thrombi

    Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercialNoDerivs 3.0 Unported License.-- et al.The pathogenic mechanisms underlying the progression of non-alcoholic fatty liver disease (NAFLD) are not fully understood. In this study, we aimed to assess the relationship between endoplasmic reticulum (ER) stress and autophagy in human and mouse hepatocytes during NAFLD. ER stress and autophagy markers were analyzed in livers from patients with biopsy-proven non-alcoholic steatosis (NAS) or non-alcoholic steatohepatitis (NASH) compared with livers from subjects with histologically normal liver, in livers from mice fed with chow diet (CHD) compared with mice fed with high fat diet (HFD) or methionine-choline-deficient (MCD) diet and in primary and Huh7 human hepatocytes loaded with palmitic acid (PA). In NASH patients, significant increases in hepatic messenger RNA levels of markers of ER stress (activating transcription factor 4 (ATF4), glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP)) and autophagy (BCN1) were found compared with NAS patients. Likewise, protein levels of GRP78, CHOP and p62/SQSTM1 (p62) autophagic substrate were significantly elevated in NASH compared with NAS patients. In livers from mice fed with HFD or MCD, ER stress-mediated signaling was parallel to the blockade of the autophagic flux assessed by increases in p62, microtubule-associated protein 2 light chain 3 (LC3-II)/LC3-I ratio and accumulation of autophagosomes compared with CHD fed mice. In Huh7 hepatic cells, treatment with PA for 8 h triggered activation of both unfolding protein response and the autophagic flux. Conversely, prolonged treatment with PA (24 h) induced ER stress and cell death together with a blockade of the autophagic flux. Under these conditions, cotreatment with rapamycin or CHOP silencing ameliorated these effects and decreased apoptosis. Our results demonstrated that the autophagic flux is impaired in the liver from both NAFLD patients and murine models of NAFLD, as well as in lipid-overloaded human hepatocytes, and it could be due to elevated ER stress leading to apoptosis. Consequently, therapies aimed to restore the autophagic flux might attenuate or prevent the progression of NAFLD.We acknowledge the following grant support: SAF2012-33283 (MINECO, Spain), Comunidad de Madrid S2010/BMD-2423, EFSD and Amylin Paul Langerhans Grant and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM, ISCIII, Barcelona, Spain) to AMV.; SAF2010-16037, SAF2013-43713-R (MINECO) and Centro de Investigación Biomédica en Red de Enfermedades Hepåticas y Digestivas (CIBEREHD, ISCIII) to PMS. RD12/0042/0019 (ISCIII) and S2010/BMD-2478 (Comunidad de Madrid) to LB, PI 13/01299 and Fundación Mutua Madrileña 2012 to C G-M and AIRC IG-2012 to GMF.Peer Reviewe

    Neurocysticercosis, a Persisting Health Problem in Mexico

    Get PDF
    Human neurocysticercosis is a severe parasitic disease caused by the installation of Taenia solium larvae in the central nervous system. Neurocysticercosis is still deeply rooted in Latin-America, Africa and Asia, where it develops its complete life cycle promoted by poor sanitary conditions. It is also emerging in developed countries due to human migration. Although hard data on the evolution of the disease incidence in endemic countries are lacking, its presence is being obscured by the growth of degenerative and metabolic diseases, creating the illusion of having disappeared

    Autonomic impairment of patients in coma with different Glasgow coma score assessed with heart rate variability

    Get PDF
    Primary objective: The objective of this study is to assess the functional state of the autonomic nervous system in healthy individuals and in individuals in coma using measures of heart rate variability (HRV) and to evaluate its efficiency in predicting mortality. Design and Methods: Retrospective group comparison study of patients in coma classified into two subgroups, according to their Glasgow coma score, with a healthy control group. HRV indices were calculated from 7 min of artefact-free electrocardiograms using the Hilbert–Huang method in the spectral range 0.02–0.6 Hz. A special procedure was applied to avoid confounding factors. Stepwise multiple regression logistic analysis (SMLRA) and ROC analysis evaluated predictions. Results: Progressive reduction of HRV was confirmed and was associated with deepening of coma and a mortality score model that included three spectral HRV indices of absolute power values of very low, low and very high frequency bands (0.4-0.6 Hz). The SMLRA model showed sensitivity of 95.65%, specificity of 95.83%, positive predictive value of 95.65%, and overall efficiency of 95.74%. Conclusions: HRV is a reliable method to assess the integrity of the neural control of the caudal brainstem centres on the hearts of patients in coma and to predict patient mortality

    Unraveling the effect of silent, intronic and missense mutations on VWF splicing: contribution of next generation sequencing in the study of mRNA

    Get PDF
    Large studies in von Willebrand disease patients, including Spanish and Portuguese registries, led to identification of >250 different mutations. It is a challenge to determine the pathogenic effect of potential splice site mutations on VWF mRNA. This study aimed to elucidate the true effects of 18 mutations on VWF mRNA processing, investigate the contribution of next-generation sequencing to in vivo mRNA study in von Willebrand disease, and compare the findings with in silico prediction. RNA extracted from patient platelets and leukocytes was amplified by RT-PCR and sequenced using Sanger and next generation sequencing techniques. Eight mutations affected VWF splicing: c.1533+1G>A, c.5664+2T>C and c.546G>A (p.=) prompted exon skipping; c.3223-7_3236dup and c.7082-2A>G resulted in activation of cryptic sites; c.3379+1G>A and c.7473G>A (p.=) demonstrated both molecular pathogenic mechanisms simultaneously; and the p.Cys370Tyr missense mutation generated two aberrant transcripts. Of note, the complete effect of 3 mutations was provided by next generation sequencing alone because of low expression of the aberrant transcripts. In the remaining 10 mutations, no effect was elucidated in the experiments. However, the differential findings obtained in platelets and leukocytes provided substantial evidence that 4 of these would have an effect on VWF levels. In this first report using next generation sequencing technology to unravel the effects of VWF mutations on splicing, the technique yielded valuable information. Our data bring to light the importance of studying the effect of synonymous and missense mutations on VWF splicing to improve the current knowledge of the molecular mechanisms behind von Willebrand disease.info:eu-repo/semantics/publishedVersio

    Unraveling the effect of silent, intronic and missense mutations on VWF splicing: contribution of next generation sequencing in the study of mRNA

    Get PDF
    Large studies in von Willebrand disease patients, including Spanish and Portuguese registries, led to the identification of >250 different mutations. It is a challenge to determine the pathogenic effect of potential splice site mutations on VWF mRNA. This study aimed to elucidate the true effects of 18 mutations on VWF mRNA processing, investigate the contribution of next-generation sequencing to in vivo mRNA study in von Willebrand disease, and compare the findings with in silico prediction. RNA extracted from patient platelets and leukocytes was amplified by RT-PCR and sequenced using Sanger and next generation sequencing techniques. Eight mutations affected VWF splicing: c.1533+1G>A, c.5664+2T>C and c.546G>A (p.=) prompted exon skipping; c.3223-7_3236dup and c.7082-2A>G resulted in activation of cryptic sites; c.3379+1G>A and c.7437G>A) demonstrated both molecular pathogenic mechanisms simultaneously; and the p.Cys370Tyr missense mutation generated two aberrant transcripts. Of note, the complete effect of three mutations was provided by next generation sequencing alone because of low expression of the aberrant transcripts. In the remaining 10 mutations, no effect was elucidated in the experiments. However, the differential findings obtained in platelets and leukocytes provided substantial evidence that four of these would have an effect on VWF levels. In this first report using next generation sequencing technology to unravel the effects of VWF mutations on splicing, the technique yielded valuable information. Our data bring to light the importance of studying the effect of synonymous and missense mutations on VWF splicing to improve the current knowledge of the molecular mechanisms behind von Willebrand disease. clinicaltrials.gov identifier:02869074

    Epidemiology of traumatic spinal cord injury in Galicia, Spain: trends over a 20-year period

    Get PDF
    [Abstract] Study design: Observational study with prospective and retrospective monitoring. Objective: To describe the epidemiological and demographic characteristics of traumatic spinal cord injury (TSCI), and to analyze its epidemiological changes. Setting: Unidad de Lesionados Medulares, Complejo Hospitalario Universitario A Coruña, in Galicia (Spain). Methods: The study included patients with TSCI who had been hospitalized between January 1995 and December 2014. Relevant data were extracted from the admissions registry and electronic health record. Results: A total of 1195 patients with TSCI were admitted over the specified period of time; 76.4% male and 23.6% female. Mean patient age at injury was 50.20 years. Causes of injury were falls (54.2%), traffic accidents (37%), sports/leisure-related accidents (3.5%) and other traumatic causes (5.3%). Mean patient age increased significantly over time (from 46.40 to 56.54 years), and the number of cases of TSCI related to traffic accidents decreased (from 44.5% to 23.7%), whereas those linked to falls increased (from 46.9% to 65.6%). The most commonly affected neurological level was the cervical level (54.9%), increasing in the case of levels C1–C4 over time, and the most frequent ASIA (American Spinal Injury Association) grade was A (44.3%). The crude annual incidence rate was 2.17/100 000 inhabitants, decreasing significantly over time at an annual percentage rate change of −1.4%. Conclusions: The incidence rate of TSCI tends to decline progressively. Mean patient age has increased over time and cervical levels C1–C4 are currently the most commonly affected ones. These epidemiological changes will eventually result in adjustments in the standard model of care for TSCI

    Two Nuclear Localization Signals in USP1 Mediate Nuclear Import of the USP1/UAF1 Complex

    Get PDF
    The human deubiquitinase USP1 plays important roles in cancer-related processes, such as the DNA damage response, and the maintenance of the undifferentiated state of osteosarcoma cells. USP1 deubiquitinase activity is critically regulated by its interaction with the WD40 repeat-containing protein UAF1. Inhibiting the function of the USP1/UAF1 complex sensitizes cancer cells to chemotherapy, suggesting that this complex is a relevant anticancer target. Intriguingly, whereas UAF1 has been reported to locate in the cytoplasm, USP1 is a nuclear protein, although the sequence motifs that mediate its nuclear import have not been functionally characterized. Here, we identify two nuclear localization signals (NLSs) in USP1 and show that these NLSs mediate the nuclear import of the USP1/UAF1 complex. Using a cellular relocation assay based on these results, we map the UAF1-binding site to a highly conserved 100 amino acid motif in USP1. Our data support a model in which USP1 and UAF1 form a complex in the cytoplasm that subsequently translocates to the nucleus through import mediated by USP1 NLSs. Importantly, our findings have practical implications for the development of USP1-directed therapies. First, the UAF1-interacting region of USP1 identified here might be targeted to disrupt the USP1/UAF1 interaction with therapeutic purposes. On the other hand, we describe a cellular relocation assay that can be easily implemented in a high throughput setting to search for drugs that may dissociate the USP1/UAF1 complex

    Response of Quercus ilex seedlings to Phytophthora spp. root infection in a soil infestation test

    Full text link
    [EN] Phytophthora species are the main agents associated with oak (Quercus spp.) decline, together with the changing environmental conditions and the intensive land use. The aim of this study was to evaluate the susceptibility of Quercus ilex to the inoculation with eight Phytophthora species. Seven to eight month old Q. ilex seedlings grown from acorns, obtained from two Spanish origins, were inoculated with P. cinnamomi, P. cryptogea, P. gonapodyides, P. megasperma, P. nicotianae, P. plurivora, P. psychrophila and P. quercina. All Phytophthora inoculated seedlings showed decline and symptoms including small dark necrotic root lesions, root cankers, and loss of fine roots and tap root. The most aggressive species were P. cinnamomi, P. cryptogea, P. gonapodyides, P. plurivora and P. psychrophila followed by P. megasperma., while Phytophthora quercina and P. nicotianae were the less aggressive species. Results obtained confirm that these Phytophthora species could constituted a threat to Q. ilex ecosystems and the implications are further discussed.The authors are grateful to A. Solla and his team from the Centro Universitario de Plasencia-Universidad de Extremadura (Spain) for helping in the acorns collection and to the CIEF (Centro para la InvestigaciĂłn y ExperimentaciĂłn Forestal, Generalitat Valenciana, Valencia, Spain) for providing the acorns. This research was supported by funding from the project AGL2011- 30438-C02-01 (Ministerio de EconomĂ­a y Competitividad, Spain).Mora-Sala, B.; Abad Campos, P.; Berbegal Martinez, M. (2018). Response of Quercus ilex seedlings to Phytophthora spp. root infection in a soil infestation test. European Journal of Plant Pathology. https://doi.org/10.1007/s10658-018-01650-6SÁlvarez, L. A., PĂ©rez-Sierra, A., Armengol, J., & GarcĂ­a-JimĂ©nez, J. (2007). Characterization of Phytophthora nicotianae isolates causing collar and root rot of lavender and rosemary in Spain. Journal of Plant Pathology, 89, 261–264.Balci, Y., & Halmschlager, E. (2003a). Incidence of Phytophthora species in oak forests in Austria and their possible involvement in oak decline. Forest Pathology, 33, 157–174.Balci, Y., & Halmschlager, E. (2003b). Phytophthora species in oak ecosystems in Turkey and their association with declining oak trees. Plant Pathology, 52, 694–702.Brasier, C. M. (1992a). Oak tree mortality in Iberia. Nature, 360, 539.Brasier, C. M. ((1992b)). Phytophthora cinnamomi as a contributory factor on European oak declines. In N. by Luisi, P. Lerario, & A. B. Vannini (Eds.), Recent Advances in Studies on Oak Decline. Proc. Int. Congress, Brindisi, Italy, September 13-18, 1992 (pp. 49–58). Italy: UniversitĂ  degli Studi.Brasier, C. M. (1996). Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Annales des Sciences Forestieres, 53, 347–358.Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57, 792–808.Brasier, C. M., Hamm, P. B., & Hansen, E. M. (1993a). Cultural characters, protein patterns and unusual mating behaviour of P. gonapodyides isolates from Britain and North America. Mycological Research, 97, 1287–1298.Brasier, C. M., Robredo, F., & Ferraz, J. F. P. (1993b). Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathology, 42, 140–145.Camilo-Alves, C. S. P., Clara, M. I. E., & Ribeiro, N. M. C. A. (2013). Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. European Journal of Forest Research, 132, 411–432.CatalĂ , S., Berbegal, M., PĂ©rez-Sierra, A., & Abad-Campos, P. (2017). Metabarcoding and development of new real-time specific assays reveal Phytophthora species diversity in holm oak forests in eastern Spain. Plant Pathology, 66, 115–123.Collett, D. (2003). Modelling survival data in medical research (2nd ed.). Boca Raton: Chapman & Hall/CRC, 410 pp.Corcobado, T., Cubera, E., PĂ©rez-Sierra, A., Jung, T., & Solla, A. (2010). First report of Phytophthora gonapodyides involved in the decline of Quercus ilex in xeric conditions in Spain. New Disease Reports, 22, 33.Corcobado, T., Cubera, E., Moreno, G., & Solla, A. (2013). Quercus ilex forests are influenced by annual variations in water table, soil water deficit and fine root loss caused by Phytophthora cinnamomi. Agricultural and Forest Meteorology, 169, 92–99.Corcobado, T., Vivas, M., Moreno, G., & Solla, A. (2014). Ectomycorrhizal symbiosis in declining and non-declining Quercus ilex trees infected with or free of Phytophthora cinnamomi. Forest Ecology and Management, 324, 72–80.Corcobado, T., Miranda-Torres, J. J., MartĂ­n-GarcĂ­a, J., Jung, T., & Solla, A. (2017). Early survival of Quercus ilex subspecies from different populations after infections and co-infections by multiple Phytophthora species. Plant Pathology, 66, 792–804.Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul, Minnesota,USA: APS Press, American Phytopathological. Society 562pp.Gallego, F. J., Perez de Algaba, A., & Fernandez-Escobar, R. (1999). Etiology of oak decline in Spain. European Journal of Forest Pathology, 29, 17–27.Hansen, E., & Delatour, C. (1999). Phytophthora species in oak forests of north-east France. Annals of Forest Science, 56, 539–547.Hardham, A. R., & Blackman, L. M. (2010). Molecular cytology of Phytophthora plant interactions. Australasian Plant Pathology, 39, 29.HernĂĄndez-Lambraño, R. E., GonzĂĄlez-Moreno, P., & SĂĄnchez-Agudo, J. Á. (2018). Environmental factors associated with the spatial distribution of invasive plant pathogens in the Iberian Peninsula: The case of Phytophthora cinnamomi Rands. Forest Ecology and Management, 419, 101–109.Jankowiak, R., Stępniewska, H., BilaƄski, P., & Kolaƙík, M. (2014). Occurrence of Phytophthora plurivora and other Phytophthora species in oak forests of southern Poland and their association with site conditions and the health status of trees. Folia Microbiologica, 59, 531–542.Jeffers, S. N., & Aldwinckle, H. S. (1987). Enhancing detection of Phytophthora cactorum in naturally infested soil. Phytopathology, 77, 1475–1482.JimĂ©nez, A. J., SĂĄnchez, E. J., Romero, M. A., Belbahri, L., Trapero, A., Lefort, F., & SĂĄnchez, M. E. (2008). Pathogenicity of Pythium spiculum and P. sterilum on feeder roots of Quercus rotundifolia. Plant Pathology, 57, 369.Jönsson, U. (2006). A conceptual model for the development of Phytophthora disease in Quercus robur. New Phytologist, 171, 55–68.Jönsson, U., Jung, T., Rosengren, U., Nihlgard, B., & Sonesson, K. (2003). Pathogenicity of Swedish isolates of Phytophthora quercina to Quercus robur in two different soils. New Phytologist, 158, 355–364.Jung, T., & Burgess, T. I. (2009). Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia, 22, 95–110.Jung, T., Blaschke, H., & Neumann, P. (1996). Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. European Journal of Forest Pathology, 26, 253–272.Jung, T., Cooke, D. E. L., Blaschke, H., Duncan, J. M., & Oßwald, W. (1999). Phytophthora quercina sp. nov., causing root rot of European oaks. Mycological Research, 103, 785–798.Jung, T., Blaschke, H., & Oßwald, W. (2000). Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathology, 49, 706–718.Jung, T., Hansen, E. M., Winton, L., Oßwald, W., & Delatour, C. (2002). Three new species of Phytophthora from European oak forests. Mycological Research, 106, 397–411.Jung, T., Orlikowski, L., Henricot, B., Abad-Campos, P., Aday, A. G., AguĂ­n Casal, O., Bakonyi, J., Cacciola, S. O., Cech, T., Chavarriaga, D., Corcobado, T., Cravador, A., Decourcelle, T., Denton, G., Diamandis, S., Dogmus-LehtijĂ€rvi, H. T., Franceschini, A., Ginetti, B., Glavendekic, M., Hantula, J., Hartmann, G., Herrero, M., Ivic, D., Horta Jung, M., Lilja, A., Keca, N., Kramarets, V., Lyubenova, A., Machado, H., Magnano di San Lio, G., Mansilla VĂĄzquez, P. J., Marçais, B., Matsiakh, I., Milenkovic, I., Moricca, S., Nagy, Z. Á., Nechwatal, J., Olsson, C., Oszako, T., Pane, A., Paplomatas, E. J., Pintos Varela, C., Prospero, S., Rial MartĂ­nez, C., Rigling, D., Robin, C., Rytkönen, A., SĂĄnchez, M. E., Scanu, B., Schlenzig, A., Schumacher, J., Slavov, S., Solla, A., Sousa, E., Stenlid, J., TalgĂž, V., Tomic, Z., Tsopelas, P., Vannini, A., Vettraino, A. M., Wenneker, M., Woodward, S., & PerĂ©z-Sierra, A. (2016). Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathology, 46, 134–163.Kroon, L. P., Brouwer, H., de Cock, A. W., & Govers, F. (2012). The genus Phytophthora anno 2012. Phytopathology, 102, 348–364.Linaldeddu, B. T., Scanu, B., Maddau, L., & Franceschini, A. (2014). Diplodia corticola and Phytophthora cinnamomi: the main pathogens involved in holm oak decline on Caprera Island (Italy). Forest Pathology, 44, 191–200.Luque, J., ParladĂ©, J., & Pera, J. (2000). Pathogenicity of fungi isolated from Quercus suber in Catalonia (NE Spain). Forest Pathology, 30, 247–263.Luque, J., ParladĂ©, J., & Pera, J. (2002). Seasonal changes in susceptibility of Quercus suber to Botryosphaeria stevensii and Phytophthora cinnamomi. Plant Pathology, 51, 338–345.MAGRAMA. (2014). DiagnĂłstico del Sector Forestal Español. AnĂĄlisis y Prospectiva - Serie Agrinfo/Medioambiente n° 8. Ed. Ministerio de Agricultura, AlimentaciĂłn y Medio Ambiente. In NIPO: 280-14-081-9.MartĂ­n-GarcĂ­a, J., Solla, A., Corcobado, T., Siasou, E., & Woodward, S. (2015). Influence of temperature on germination of Quercus ilex in Phytophthora cinnamomi, P. gonapodyides, P. quercina and P. psychrophila infested soils. Forest Pathology, 45, 215–223.Maurel, M., Robin, C., Capron, G., & Desprez-Loustau, M. L. (2001). Effects of root damage associated with Phytophthora cinnamomi on water elations, biomass accumulation, mineral nutrition and vulnerability to water deficit of five oak and chestnut species. Forest Pathology, 31, 353–369.McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–217.Moralejo, E., PĂ©rez-Sierra, A., Álvarez, L. A., Belbahri, L., Lefort, F., & Descals, E. (2009). Multiple alien Phytophthora taxa discovered on diseased ornamental plants in Spain. Plant Pathology, 58, 100–110.Mora-Sala, B., Berbegal, M., & Abad-Campos, P. (2018). The use of qPCR reveals a high frequency of Phytophthora quercina in two Spanish holm oak areas. Forests, 9(11):697. https://doi.org/10.3390/f9110697 .Moreira, A. C., & Martins, J. M. S. (2005). Influence of site factors on the impact of Phytophthora cinnamomi in cork oak stands in Portugal. Forest Pathology, 35, 145–162.MrĂĄzkovĂĄ, M., ČernĂœ, K., Tomosovsky, M., StrnadovĂĄ, V., GregorovĂĄ, B., Holub, V., Panek, M., HavrdovĂĄ, L., & HejnĂĄ, M. (2013). Occurrence of Phytophthora multivora and Phytophthora plurivora in the Czech Republic. Plant Protection Science, 49, 155–164.Navarro, R. M., Gallo, L., SĂĄnchez, M. E., FernĂĄndez, P., & Trapero, A. (2004). Efecto de distintas fertilizaciones de fĂłsforo en la resistencia de brinzales de encina y alcornoque a Phytophthora cinnamomi Rands. InvestigaciĂłn Agraria. Sistemas y Recursos Forestales, 13, 550–558.PanabiĂšres, F., Ali, G., Allagui, M., Dalio, R., Gudmestad, N., Kuhn, M., Guha Roy, S., Schena, L., & Zampounis, A. (2016). Phytophthora nicotianae diseases worldwide: new knowledge of a long-recognised pathogen. Phytopathologia Mediterranea, 55, 20–40.PĂ©rez-Sierra, A., & Jung, T. (2013). Phytophthora in woody ornamental nurseries. In: Phytophthora: A global perspective (pp. 166-177). Ed. by Lamour, K. Wallingford: CABI.PĂ©rez-Sierra, A., Mora-Sala, B., LeĂłn, M., GarcĂ­a-JimĂ©nez, J., & Abad-Campos, P. (2012). Enfermedades causadas por Phytophthora en viveros de plantas ornamentales. BoletĂ­n de Sanidad Vegetal-Plagas, 38, 143–156.PĂ©rez-Sierra, A., LĂłpez-GarcĂ­a, C., LeĂłn, M., GarcĂ­a-JimĂ©nez, J., Abad-Campos, P., & Jung, T. (2013). Previously unrecorded low-temperature Phytophthora species associated with Quercus decline in a Mediterranean forest in eastern Spain. Forest Pathology, 43, 331–339.Redondo, M. A., PĂ©rez-Sierra, A., & Abad-Campos, P. (2015). Histology of Quercus ilex roots during infection by Phytophthora cinnamomi. Trees - Structure and Function, 29, 1943–5197.RĂ­os, P., ObregĂłn, S., de Haro, A., FernĂĄndez-Rebollo, P., Serrano, M. S., & SĂĄnchez, M. E. (2016). Effect of Brassica Biofumigant Amendments on Different Stages of the Life Cycle of Phytophthora cinnamomi. Journal of Phytopathology, 164, 582–594.Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W., & Koike, S. T. (2002). Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Disease, 86, 205–214.Robin, C., Desprez-Loustau, M. L., Capron, G., & Delatour, C. (1998). First record of Phytophthora cinnamomi on cork and holm oaks in France and evidence of pathogenicity. Annales Des Sciences Forestieres, 55, 869–883.Robin, C., Capron, G., & Desprez-Loustau, M. L. (2001). Root infection by Phytophthora cinnamomi in seedlings of three oak species. Plant Pathology, 50, 708–716.RodrĂ­guez-Molina, M. C., Torres-Vila, L. M., Blanco-Santos, A., NĂșñez, E. J. P., & Torres-Álvarez, E. (2002). Viability of holm and cork oak seedlings from acorns sown in soils naturally infected with Phytophthora cinnamomi. Forest Pathology, 32, 365–372.Romero, M. A., SĂĄnchez, J. E., JimĂ©nez, J. J., Belbahri, L., Trapero, A., Lefort, F., & SĂĄnchez, M. E. (2007). New Pythium taxa causing root rot in Mediterranean Quercus species in southwest Spain and Portugal. Journal of Phytopathology, 115, 289–295.SĂĄnchez de Lorenzo-CĂĄceres J. M. (2001). GuĂ­a de las plantas ornamentales. S.A. Mundi-Prensa Libros. ISBN 9788471149374. 688 pp.SĂĄnchez, M. E., Caetano, P., Ferraz, J., & Trapero, A. (2002). Phytophtora disease of Quercus ilex in south-western Spain. Forest Pathology, 32, 5–18.SĂĄnchez, M. E., SĂĄnchez, J. E., Navarro, R. M., FernĂĄndez, P., & Trapero, A. (2003). Incidencia de la podredumbre radical causada por Phytophthora cinnamomi en masas de Quercus en AndalucĂ­a. BoletĂ­n de Sanidad Vegetal-Plagas, 29, 87–108.SĂĄnchez, M. E., Andicoberry, S., & Trapero, A. (2005). Pathogenicity of three Phytophthora spp. causing late seedling rot of Quercus ilex ssp. ballota. Forest Pathology, 35, 115–125.SĂĄnchez, M. E., Caetano, P., Romero, M. A., Navarro, R. M., & Trapero, A. (2006). Phytophthora root rot as the main factor of oak decline in southern Spain. In: Progress in Research on Phytophthora Diseases of Forest Trees. Proceedings of the Third International IUFRO Working Party S07.02.09. Meeting at Freising. Germany 11-18 September 2004. Brasier C. M., Jung T., Oßwald W. (Eds). Forest Research. Farnham, UK. pp. 149-154.Scanu, B., Linaldeddu, B. T., Deidda, A., & Jung, T. (2015). Diversity of Phytophthora species from declining Mediterranean maquis vegetation, including two new species, Phytophthora crassamura and P. ornamentata sp. nov. PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0143234 .Schmitthenner, A. F., & Canaday, C. H. (1983). Role of chemical factors in the development of Phytophthora diseases. In: Phytophthora. Its biology, taxonomy, ecology, and pathology (pp.189-196). Ed. by Erwin D. C., Bartnicki-Garcia S., Tsao P. H. St. Paul, : The American Phytopathological Society.Scibetta, S., Schena, L., Chimento, A., Cacciola, S. A., & Cooke, D. E. L. (2012). A molecular method to assess Phytophthora diversity in environmental samples. Journal of Microbiological Methods, 88, 356–368.Sena, K., Crocker, E., Vincelli, P., & Barton, C. (2018). Phytophthora cinnamomi as a driver of forest change: Implications for conservation and management. Forest Ecology and Management, 409, 799–807.Thines, M. (2013). Taxonomy and phylogeny of Phytophthora and related oomycetes In: Phytophthora: A global perspective (pp. 11-18). Ed. by Lamour, K. Wallingford: CABI.Tsao, P. H. (1990). Why many Phytophthora root rots and crown rots of tree and horticultural crops remain undetected. EPPO Bulletin, 20, 11–17.Tuset, J. J., Hinarejos, C., Mira, J. L., & Cobos, M. (1996). ImplicaciĂłn de Phytophthora cinnamomi Rands en la enfermedad de la seca de encinas y alcornoques. BoletĂ­n de Sanidad Vegetal-Plagas, 22, 491–499.Vettraino, A. M., Barzanti, G. P., Bianco, M. C., Ragazzi, A., Capretti, P., Paoletti, E., & Vannini, A. (2002). Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. Forest Pathology, 32, 19–28.Xia, K., Hill, L. M., Li, D. Z., & Walters, C. (2014). Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China. Annals of Botany, 114, 1747–1759
    • 

    corecore