72 research outputs found

    Microbiota metabolites: Pivotal players of cardiovascular damage in chronic kidney disease

    Get PDF
    Abstract In chronic kidney disease (CKD), cardiovascular (CV) damage is present in parallel which leads to an increased risk of CV disease. Both traditional and non-traditional risk factors contribute to CV damage in CKD. The systemic role of the microbiota as a central player in the pathophysiology of many organs is progressively emerging in the literature: the microbiota is indeed involved in a complex, bi-directional network between many organs, including the kidney and heart connection, although many of these relationships still need to be elucidated through in-depth mechanistic studies. The aim of this review is to provide evidence that microbiota metabolites influence non-traditional risk factors, such as inflammation and endothelial dysfunction in CKD-associated CV damage. Here, we report our current understanding and hypotheses on the gut-kidney and gut-heart axes and provide details on the potential mechanisms mediated by microbial metabolites. More specifically, we summarize some novel hypotheses linking the microbiota to blood pressure regulation and hypertension. We also emphasise the idea that the nutritional management of CKD should be redesigned and include the new findings from research on the intrinsic plasticity of the microbiota and its metabolites in response to food intake. The need is felt to integrate the classical salt and protein restriction approach for CKD patients with foods that enhance intestinal wellness. Finally, we discuss the new perspectives, especially the importance of taking care of the microbiota in order to prevent the risk of developing CKD and hypertension, as well as the still not tested but very promising CKD innovative treatments, such as postbiotic supplementation and bacteriotherapy. This interesting area of research offers potential complementary approaches to the management of CKD and CV damage assuming that the causal mechanisms underlying the gut-kidney and gut-heart axes are clarified. This will pave the way to the design of new personalized therapies targeting gut microbiota

    New general synthesis of alpha-alkoxyketones via alpha'-alkylation, alpha-alkylation and alpha,alpha'-dialkylation of alpha-alkoxyketimines

    Get PDF
    alpha-Methoxy- and alpha-ethoxyketones, as important intermediates in organic synthesis and flavor compounds in food chemistry, were synthesized by deprotonation of N-(1-alkoxy-2-propylidene)isopropylamine, prepared by condensation of the corresponding alpha-alkoxyacetone with isopropylamine, and subsequent reaction of the corresponding 1-azaallylic anions with alkyl halides to afford alpha'-alkylated, alpha-alkylated and alpha,alpha'-dialkylated ketimines. Hydrolysis of the imino function led to the desired substituted alpha-alkoxyketones. The ratio of alpha-, alpha'-, and alpha,alpha'-(di)alkylated compounds depended on the amount of base used and on the nature of the alkylating reagent

    Antimicrobial Properties, Functional Characterisation and Application of Fructobacillus fructosus and Lactiplantibacillus plantarum Isolated from Artisanal Honey

    Get PDF
    Honey is a valuable reservoir of lactic acid bacteria (LAB) and, particularly, of fructophilic LAB (FLAB), a relatively novel subgroup of LAB whose functional potential for human and food application has yet to be explored. In this study, FLAB and LAB strains have been isolated from honeys of different floral origins and selected for their broad antimicrobial activity against typical foodborne pathogenic bacteria and spoilage filamentous fungi. The best candidates, two strains belonging to the species Lactiplantibacillus plantarum and Fructobacillus fructosus, were submitted to partial characterisation of their cell free supernatants (CFS) in order to identify the secreted metabolites with antimicrobial activity. Besides, these strains were examined to assess some major functional features, including in vitro tolerance to the oro-gastrointestinal conditions, potential cytotoxicity against HT-29 cells, adhesion to human enterocyte-like cells and capability to stimulate macrophages. Moreover, when the tested strains were applied on table grapes artificially contaminated with pathogenic bacteria or filamentous fungi, they showed a good ability to antagonise the growth of undesired microbes, as well as to survive on the fruit surface at a concentration that is recommended to develop a probiotic effect. In conclusion, both LAB and FLAB honey-isolated strains characterised in this work exhibit functional properties that validate their potential use as biocontrol agents and for the design of novel functional foods. We reported antimicrobial activity, cytotoxic evaluation, probiotic properties and direct food application of a F. fructosus strain, improving the knowledge of this species, in particular, and on FLAB, more generally

    Semantic Segmentation Framework for Glomeruli Detection and Classification in Kidney Histological Sections

    Get PDF
    The evaluation of kidney biopsies performed by expert pathologists is a crucial process for assessing if a kidney is eligible for transplantation. In this evaluation process, an important step consists of the quantification of global glomerulosclerosis, which is the ratio between sclerotic glomeruli and the overall number of glomeruli. Since there is a shortage of organs available for transplantation, a quick and accurate assessment of global glomerulosclerosis is essential for retaining the largest number of eligible kidneys. In the present paper, the authors introduce a Computer-Aided Diagnosis (CAD) system to assess global glomerulosclerosis. The proposed tool is based on Convolutional Neural Networks (CNNs). In particular, the authors considered approaches based on Semantic Segmentation networks, such as SegNet and DeepLab v3+. The dataset has been provided by the Department of Emergency and Organ Transplantations (DETO) of Bari University Hospital, and it is composed of 26 kidney biopsies coming from 19 donors. The dataset contains 2344 non-sclerotic glomeruli and 428 sclerotic glomeruli. The proposed model consents to achieve promising results in the task of automatically detecting and classifying glomeruli, thus easing the burden of pathologists. We get high performance both at pixel-level, achieving mean F-score higher than 0.81, and Weighted Intersection over Union (IoU) higher than 0.97 for both SegNet and Deeplab v3+ approaches, and at object detection level, achieving 0.924 as best F-score for non-sclerotic glomeruli and 0.730 as best F-score for sclerotic glomeruli

    Urinary myeloid IgA Fc alpha receptor (CD89) and transglutaminase-2 as new biomarkers for active IgA nephropathy and henoch-Schönlein purpura nephritis

    Get PDF
    Background: IgA nephropathy (IgAN) and Henoch-Schönlein purpura nephritis (HSPN) are glomerular diseases that share a common and central pathogenic mechanism. The formation of immune complexes containing IgA1, myeloid IgA Fc alpha receptor (FcαRI/CD89) and transglutaminase-2 (TG2) is observed in both conditions. Therefore, urinary CD89 and TG2 could be potential biomarkers to identify active IgAN/HSPN. Methods: In this multicenter study, 160 patients with IgAN or HSPN were enrolled. Urinary concentrations of CD89 and TG2, as well as some other biochemical parameters, were measured. Results: Urinary CD89 and TG2 were lower in patients with active IgAN/HSPN compared to IgAN/HSPN patients in complete remission (P < 0.001). The CD89xTG2 formula had a high ability to discriminate active from inactive IgAN/HSPN in both situations. : CD89xTG2/proteinuria ratio (AUC: 0.84, P < 0.001, sensitivity: 76%, specificity: 74%) and CD89xTG2/urinary creatinine ratio (AUC: 0.82, P < 0.001, sensitivity: 75%, specificity: 74%). Significant correlations between urinary CD89 and TG2 (r = 0.711, P < 0.001), proteinuria and urinary CD89 (r = -0.585, P < 0.001), and proteinuria and urinary TG2 (r = -0.620, P < 0.001) were observed. Conclusions: Determination of CD89 and TG2 in urine samples can be useful to identify patients with active IgAN/HSPN

    Lysine 63 ubiquitination is involved in the progression of tubular damage in diabetic nephropathy

    Get PDF
    The purpose of our study was to evaluate how hyperglycemia (HG)influences Lys63 protein ubiquitination and its involvement in tubular damage and fibrosis in diabetic nephropathy (DN). Gene and protein expression of UBE2v1, a ubiquitin-conjugating E2-enzyme variant that mediates Lys63-linked ubiquitination, and Lys63-ubiquitinated proteins increased in HK2 tubular cells under HG. Matrix-assisted laser desorption/ionization-time of flight/tandemmass spectrometry identified 30 Lys63-ubiquitinated proteins, mainly involved in cellular organization, such as β-actin, whose Lys63 ubiquitination increased under HG, leading to cytoskeleton disorganization. This effect was reversed by the inhibitor of the Ubc13/UBE2v1 complexNSC697923. Western blot analysis confirmed that UBE2v1 silencing in HK2 under HG, restored Lys63-β-actin ubiquitination levels tothebasal condition. Immunohistochemistry on patients with type 2diabetic (T2D) revealed an increase in UBE2v1-and Lys63-ubiquitinatedproteins, particularly in kidneys of patients with DN compared with control kidneys and other non diabetic renal diseases, such as membranous nephropathy. Increased Lys63 ubiquitination both in vivo in patients with DN and in vitro, correlated with a-SMA expression, whereas UBE2v1 silencing reduced HG-induced a-SMA protein levels, returning them to basal expression. In conclusion, UBE2v1- and Lys63-ubiquitinated proteins increase in vitro under HG, as well as in vivo in T2D, is augmented in patients with DN, and may affect cytoskeleton organization and influence epithelial-to-mesenchymal transition. This process may drive the progression of tubular damage and interstitial fibrosis in patients with DN

    Prebiotic effects of olive pomace powders in the gut: In vitro evaluation of the inhibition of adhesion of pathogens, prebiotic and antioxidant effects

    Get PDF
    Supplementary data related to this article can be found at https:// doi.org/10.1016/j.foodhyd.2020.106312Olive pomace is a biowaste rich in polyphenols and insoluble dietary fibre with high potential to develop new value chains towards a sustainable and circular bioeconomy. Regarding gut health, olive pomace phenolics and insoluble dietary fibre (after possible fermentation) could act as antioxidants, antimicrobial and prebiotic agents. These potential beneficial effects on the gut were analysed for two powders from olive pomace: liquid-enriched powder (LOPP) - mostly source of phenolics - and pulp-enriched powder (POPP) - main source of insoluble dietary fibre. LOPP and POPP were subjected to an in vitro simulated gastrointestinal digestion followed by in vitro faecal fermentation. The undigested fraction retained in the colon was analysed regarding its potential antioxidant, antimicrobial and prebiotic effects. LOPP and POPP did not impact the gut microbiota diversity negatively, showing a similar ratio of Firmicutes/Bacteroidetes compared to a positive control (FOS). LOPP exhibit a positive (similar to FOS) effect on the Prevotella spp./Bacteroides spp. ratio. Both powders also promoted more the production of short-chain fatty acids (mainly acetate?>?butyrate?>?propionate) than FOS. Both powders showed also significant total phenolic content and oxygen radical absorbance capacity during faecal fermentation until 48?h. Besides that, these powders showed mucin-adhesion inhibition ability against pathogens, principally POPP against Bacillus cereus (22.03?±?2.45%) and Listeria monocytogenes (20.01?±?1.93%). This study demonstrates that olive pomace powders have prebiotic effects on microbiota, including the stimulation of short-chain fatty acids production, potential antioxidant and antimicrobial activity which could improve human gut health.Tˆania I. B. Ribeiro thanks the FCT - Fundação para a Ciência e Tecnologia, Portugal and Association BLC3 – Technology and Innovation Campus, Centre Bio R&D Unit for the PhD Grant SFRH/BDE/108271/2015. This work was supported by National Funds from FCT - Fundação para a Ciência e a Tecnologia, Portugal through the project MULTI-BIOREFINERY - SAICTPAC/0040/2015 (POCI-01-0145-FEDER- 016403). We would also like to thank the scientific collaboration under the FCT project UID/Multi/50016/2019.info:eu-repo/semantics/publishedVersio

    Shedding light on typical species : implications for habitat monitoring

    Get PDF
    Habitat monitoring in Europe is regulated by Article 17 of the Habitats Directive, which suggests the use of typical species to assess habitat conservation status. Yet, the Directive uses the term “typical” species but does not provide a definition, either for its use in reporting or for its use in impact assessments. To address the issue, an online workshop was organized by the Italian Society for Vegetation Science (SISV) to shed light on the diversity of perspectives regarding the different concepts of typical species, and to discuss the possible implications for habitat monitoring. To this aim, we inquired 73 people with a very different degree of expertise in the field of vegetation science by means of a tailored survey composed of six questions. We analysed the data using Pearson's Chi-squared test to verify that the answers diverged from a random distribution and checked the effect of the degree of experience of the surveyees on the results. We found that most of the surveyees agreed on the use of the phytosociological method for habitat monitoring and of the diagnostic and characteristic species to evaluate the structural and functional conservation status of habitats. With this contribution, we shed light on the meaning of “typical” species in the context of habitat monitoring
    corecore