26 research outputs found

    Multiple cavity experiments to detect parity nonconservation in atomic hydrogen

    Full text link
    We develop general guidelines and criteria for designing and evaluating beam experiments which use Ramsey's method of separated oscillating fields to detect PNC (parity nonconserving) effects in atomic hydrogen. We find that variation of the relative radio-frequency phases between different field configurations may offer distinct advantages in measuring and processing expected PNC data. We evaluate several specific experiments employing such multiple region designs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23951/1/0000198.pd

    Memory Effects in Spontaneous Emission Processes

    Full text link
    We consider a quantum-mechanical analysis of spontaneous emission in terms of an effective two-level system with a vacuum decay rate Γ0\Gamma_0 and transition angular frequency ωA\omega_A. Our analysis is in principle exact, even though presented as a numerical solution of the time-evolution including memory effects. The results so obtained are confronted with previous discussions in the literature. In terms of the {\it dimensionless} lifetime τ=tΓ0\tau = t\Gamma_0 of spontaneous emission, we obtain deviations from exponential decay of the form O(1/τ){\cal O} (1/\tau) for the decay amplitude as well as the previously obtained asymptotic behaviors of the form O(1/τ2){\cal O} (1/\tau^2) or O(1/τln2τ){\cal O} (1/\tau \ln^2\tau) for τ1\tau \gg 1 . The actual asymptotic behavior depends on the adopted regularization procedure as well as on the physical parameters at hand. We show that for any reasonable range of τ\tau and for a sufficiently large value of the required angular frequency cut-off ωc\omega_c of the electro-magnetic fluctuations, i.e. ωcωA\omega_c \gg \omega_A, one obtains either a O(1/τ){\cal O} (1/\tau) or a O(1/τ2){\cal O} (1/\tau^2) dependence. In the presence of physical boundaries, which can change the decay rate with many orders of magnitude, the conclusions remains the same after a suitable rescaling of parameters.Comment: 13 pages, 5 figures and 46 reference

    Atoms in Flight and the Remarkable Connections between Atomic and Hadronic Physics

    Full text link
    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.Comment: Presented at EXA2011, the International Conference on Exotic Atoms and Related Topics, Vienna, September 5-9, 201

    Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants

    Full text link
    Quantum electrodynamics is the first successful and still the most successful quantum field theory. Simple atoms, being essentially QED systems, allow highly accurate theoretical predictions. Because of their simple spectra, such atoms have been also efficiently studied experimentally frequently offering the most precisely measured quantities. Our review is devoted to comparison of theory and experiment in the field of precision physics of light simple atoms. In particular, we consider the Lamb shift in the hydrogen atom, the hyperfine structure in hydrogen, deuterium, helium-3 ion, muonium and positronium, as well as a number of other transitions in positronium. Additionally to a spectrum of unperturbed atoms, we consider annihilation decay of positronium and the g factor of bound particles in various two-body atoms. Special attention is paid to the uncertainty of the QED calculations due to the uncalculated higher-order corrections and effects of the nuclear structure. We also discuss applications of simple atoms to determination of several fundamental constants
    corecore