59 research outputs found

    Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.

    Get PDF
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction

    Polygenic hazard score is associated with prostate cancer in multi-ethnic populations

    Get PDF
    Genetic models for cancer have been evaluated using almost exclusively European data, which could exacerbate health disparities. A polygenic hazard score (PHS1) is associated with age at prostate cancer diagnosis and improves screening accuracy in Europeans. Here, we evaluate performance of PHS2 (PHS1, adapted for OncoArray) in a multi-ethnic dataset of 80,491 men (49,916 cases, 30,575 controls). PHS2 is associated with age at diagnosis of any and aggressive (Gleason score >= 7, stage T3-T4, PSA >= 10ng/mL, or nodal/distant metastasis) cancer and prostate-cancer-specific death. Associations with cancer are significant within European (n=71,856), Asian (n=2,382), and African (n=6,253) genetic ancestries (p<10(-180)). Comparing the 80(th)/20(th) PHS2 percentiles, hazard ratios for prostate cancer, aggressive cancer, and prostate-cancer-specific death are 5.32, 5.88, and 5.68, respectively. Within European, Asian, and African ancestries, hazard ratios for prostate cancer are: 5.54, 4.49, and 2.54, respectively. PHS2 risk-stratifies men for any, aggressive, and fatal prostate cancer in a multi-ethnic dataset. A polygenic hazard score (PHS1) improves prostate cancer screening accuracy in European patients. Here, the authors test the performance of a version compatible with OncoArray genotypes (PHS2) in a multi-ethnic dataset and find that it risk-stratifies men for any, aggressive, and fatal prostate cancer

    Polygenic hazard score is associated with prostate cancer in multi-ethnic populations.

    Get PDF
    Genetic models for cancer have been evaluated using almost exclusively European data, which could exacerbate health disparities. A polygenic hazard score (PHS1) is associated with age at prostate cancer diagnosis and improves screening accuracy in Europeans. Here, we evaluate performance of PHS2 (PHS1, adapted for OncoArray) in a multi-ethnic dataset of 80,491 men (49,916 cases, 30,575 controls). PHS2 is associated with age at diagnosis of any and aggressive (Gleason score ≥ 7, stage T3-T4, PSA ≥ 10 ng/mL, or nodal/distant metastasis) cancer and prostate-cancer-specific death. Associations with cancer are significant within European (n = 71,856), Asian (n = 2,382), and African (n = 6,253) genetic ancestries (p < 10-180). Comparing the 80th/20th PHS2 percentiles, hazard ratios for prostate cancer, aggressive cancer, and prostate-cancer-specific death are 5.32, 5.88, and 5.68, respectively. Within European, Asian, and African ancestries, hazard ratios for prostate cancer are: 5.54, 4.49, and 2.54, respectively. PHS2 risk-stratifies men for any, aggressive, and fatal prostate cancer in a multi-ethnic dataset

    Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk

    Get PDF
    Funder: Funding details are provided in the Supplementary MaterialAbstractPolygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally-efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, “select and shrink for summary statistics” (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestry; 7,669 women of East Asian ancestry; 1,072 women of African ancestry, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestry. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38(95%CI:1.28–1.48,AUC:0.588) per unit standard deviation, in women of European ancestry; 1.14(95%CI:1.08–1.19,AUC:0.538) in women of East Asian ancestry; 1.38(95%CI:1.21-1.58,AUC:0.593) in women of African ancestry; hazard ratios of 1.37(95%CI:1.30–1.44,AUC:0.592) in BRCA1 pathogenic variant carriers and 1.51(95%CI:1.36-1.67,AUC:0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.</jats:p

    A genome‐wide association study of prostate cancer in Latinos

    No full text
    Latinos represent &lt;1% of samples analyzed to date in genome-wide association studies of cancer. The clinical value of genetic information in guiding personalized medicine in populations of non-European ancestry will require additional discovery and risk locus characterization efforts across populations. In the present study, we performed a GWAS of prostate cancer (PrCa) in 2,820 Latino PrCa cases and 5,293 controls to search for novel PrCa risk loci and to examine the generalizability of known PrCa risk loci in Latino men. We also conducted a genetic admixture-mapping scan to identify PrCa risk alleles associated with local ancestry. Genome-wide significant associations were observed with 84 variants all located at the known PrCa risk regions at 8q24 (128.484-128.548) and 10q11.22 (MSMB gene). In admixture mapping, we observed genome-wide significant associations with local African ancestry at 8q24. Of the 162 established PrCa risk variants that are common in Latino men, 135 (83.3%) had effects that were directionally consistent as previously reported, among which 55 (34.0%) were statistically significant with p &lt; 0.05. A polygenic risk model of the known PrCa risk variants showed that, compared to men with average risk (25th-75th percentile of the polygenic risk score distribution), men in the top 10% had a 3.19-fold (95% CI: 2.65, 3.84) increased PrCa risk. In conclusion, we found that the known PrCa risk variants can effectively stratify PrCa risk in Latino men. Larger studies in Latino populations will be required to discover and characterize genetic risk variants for PrCa and improve risk stratification for this population

    Short Rubric Scores for Texas A&M Libraries DAMS Evaluation

    No full text
    Microsoft Excel (xslx) and csv version of the Texas A&amp;M University Libraries DAMS Task Force Short Rubric evaluation of DSpace, Islandora, Hydra/Sufia, Nuxeo, and ResourceSpace.</p

    Long Rubric Scores for Texas A&M Libraries DAMS Evaluation

    No full text
    MS Excel file contains 8 worksheets for each Long Rubric evaluation subsection. Each worksheet includes final evaluation scores for DSpace, Islandora, and Hydra/Sufia for that section. Sections include: Inputting and Structuring Content User Management Ticket/Request/Workflow Statistics/Reporting Discover Relational Linking Presentation External Systems A score of C denotes a feature that was not present, but could be configured. A score of T denotes a solution could not be found in the 20 minute investigation time allotted. Please see details in the associated publication. The tables in table_long_rubric_scores.xlsx and table_long_rubric_scores.csv contain summary data for the long rubric sections.</p
    corecore