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Polygenic hazard score is associated with prostate
cancer in multi-ethnic populations

Genetic models for cancer have been evaluated using almost exclusively European data,

which could exacerbate health disparities. A polygenic hazard score (PHS1) is associated with

age at prostate cancer diagnosis and improves screening accuracy in Europeans. Here, we

evaluate performance of PHS2 (PHS1, adapted for OncoArray) in a multi-ethnic dataset of

80,491 men (49,916 cases, 30,575 controls). PHS2 is associated with age at diagnosis of any

and aggressive (Gleason score≥ 7, stage T3-T4, PSA≥ 10 ng/mL, or nodal/distant metas-

tasis) cancer and prostate-cancer-specific death. Associations with cancer are significant

within European (n= 71,856), Asian (n= 2,382), and African (n= 6,253) genetic ancestries

(p < 10−180). Comparing the 80th/20th PHS2 percentiles, hazard ratios for prostate cancer,

aggressive cancer, and prostate-cancer-specific death are 5.32, 5.88, and 5.68, respectively.

Within European, Asian, and African ancestries, hazard ratios for prostate cancer are: 5.54,

4.49, and 2.54, respectively. PHS2 risk-stratifies men for any, aggressive, and fatal prostate

cancer in a multi-ethnic dataset.
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Prostate cancer is the second most common cancer diag-
nosed in men worldwide, causing substantial morbidity and
mortality1. Prostate cancer screening may reduce morbidity

and mortality2–5, but to avoid overdiagnosis and overtreatment of
indolent disease6–9, it should be targeted and personalized.
Prostate cancer age at diagnosis is important for clinical decisions
regarding if/when to initiate screening for an individual10,11.
Survival is another key cancer endpoint recommended for risk
models12.

Genetic risk stratification is promising for identifying indivi-
duals with a greater predisposition for developing cancer13–16,
including prostate cancer17. Polygenic models use common var-
iants—identified in genome-wide association studies—whose
combined effects can assess the overall risk of disease develop-
ment18,19. Recently, a polygenic hazard score (PHS) was devel-
oped as a weighted sum of 54 single-nucleotide polymorphisms
(SNPs) that models a man’s genetic predisposition for developing
prostate cancer13. Validation testing was done using ProtecT trial
data2 and demonstrated the PHS to be associated with age at
prostate cancer diagnosis, including aggressive prostate cancer13.
However, the development and validation datasets were limited to
men of European ancestry. While genetic risk models might be
important clinical tools for prognostication and risk stratification,
using them may worsen health disparities20–24 because most
models are constructed using European data and may under-
represent genetic variants important in persons of non-European
ancestry20–24. Indeed, this is particularly concerning in prostate
cancer, as race/ethnicity is an important prostate cancer risk
factor; diagnostic, treatment, and outcomes disparities continue
to exist between different races/ethnicities25,26.

Here, we assessed PHS performance in a multi-ethnic dataset
that includes individuals of European, African, and Asian genetic
ancestry. This dataset also includes long-term follow-up infor-
mation, affording an opportunity to evaluate PHS for association
with fatal prostate cancer.

Results
Adaption of PHS for OncoArray. Of the 30 SNPs from PHS1 not
directly genotyped on OncoArray, proxy SNPs were identified for
22 (linkage disequilibrium ≥ 0.94). Therefore, PHS2 included 46
SNPs, in total (Supplementary Information). PHS2 association
with age at aggressive prostate cancer diagnosis in ProtecT was
similar to that previously reported for PHS1 (z= 21.7, p= 3.6 ×
10−104 for PHS1; z= 21.4, p= 1.3 × 10−101 for PHS2). HR98/50

was 4.68 [95% CI: 3.62–6.15] for PHS2, compared to 4.61
[3.52–5.99] for PHS1.

PHS association with any prostate cancer in OncoArray. PHS2
was associated with age at prostate cancer diagnosis in all three
OncoArray-defined genetic ancestry groups (Table 1). Comparing
the 80th and 20th percentiles of genetic risk, men with high PHS
had an HR of 5.32 [4.99–5.70] for any prostate cancer. Within

each genetic ancestry group, men with high PHS had HRs of 5.54
[5.18–5.93], 4.49 [3.23–6.33], and 2.54 [2.08–3.10] for men of
European, Asian, and African ancestry, respectively.

PHS association with aggressive prostate cancer in OncoArray.
PHS2 was associated with age at aggressive prostate cancer
diagnosis in all three OncoArray-defined genetic ancestry groups
(Table 2). Comparing the 80th and 20th percentiles of genetic
risk, men with high PHS had an HR of 5.88 [5.46–6.33] for
aggressive prostate cancer; within each genetic ancestry group,
men with high PHS had HRs of 5.62 [5.23–6.05], 5.16
[4.79–5.55], and 2.43 [2.26-2.61] for men of European, Asian, and
African ancestry, respectively.

PHS association with fatal prostate cancer in OncoArray. PHS2
was associated with age at prostate cancer death for all men in the
multi-ethnic dataset (z= 15.9, p= 6.3 × 10−57). Table 3 shows z-
scores and corresponding HRs for fatal prostate cancer. Com-
paring the 80th and 20th percentiles of genetic risk, men with
high PHS had a HR of 5.68 [5.07–6.46] for prostate cancer death.

Sensitivity analyses. Sensitivity analyses demonstrated that large
changes in assumed population incidence had minimal effect on
the calculated HRs for any, aggressive, or fatal prostate cancer
(Supplementary Information).

PHS and family history. Family history was also associated with
any prostate cancer (z= 39.7, p < 10−300; Table 4), aggressive
prostate cancer (z= 32.4, p= 2.7 × 10−230), and fatal prostate
cancer (z= 8.76, p= 1.4 × 10−18) in the multi-ethnic dataset.
Among those with known family history, the combination of
family history and PHS performed better than family history
alone (log-likelihood p < 10−300). This pattern held true when
analyses were repeated on each genetic ancestry. Additional
family history analyses are reported in the Supplementary
Information.

PHS associations with aggressive prostate cancer using alter-
native ancestry groupings
Agnostic genetic ancestry groupings with fastSTRUCTURE. With
fastSTRUCTURE, the optimal model was the one with K= 2
clusters: cluster 1 had mainly men of European OncoArray-
defined genetic ancestry and self-reported race/ethnicity, cluster 2
had only men of African OncoArray-defined genetic ancestry and
mostly Black/African American self-reported race/ancestry, while
the Admixed cluster included men of all Oncotype-defined
genetic ancestries. Table 5 demonstrates the HR80/20 for aggres-
sive prostate cancer for these K= 2 fastSTRUCTURE-defined
clusters. Comparing the 80th and 20th percentiles of genetic risk,
men with high PHS had HRs for aggressive prostate cancer
of 5.60 [5.55, 5.64], 2.06 [2.03, 2.09], and 5.05 [4.89, 5.21] for

Table 1 Association of PHS with prostate cancer.

OncoArray genetic
ancestry

z (p Value) Hazard ratios [95% CI] comparing percentiles of PHS2

HR20/50: ≤20th
vs. 30–70th

HR80/50: ≥80th
vs. 30–70th

HR98/50: ≥98th
vs. 30–70th

HR80/20: ≥80th
vs. ≤20th

All (n= 80,491) 54.3 (p < 10−300) 0.45 [0.43–0.46] 2.39 [2.31–2.47] 4.21 [3.99–4.47] 5.32 [4.99–5.70]
European (n= 71,856) 55.8 (p < 10−300) 0.44 [0.43–0.45] 2.44 [2.35–2.53] 4.34 [4.09–4.60] 5.54 [5.18–5.93]
Asian (n= 2382) 46.7 (p < 10−300) 0.48 [0.40–0.56] 2.15 [1.81–2.57] 3.77 [2.80–5.13] 4.49 [3.23–6.33]
African (n= 6253) 28.7 (p= 3.8 × 10−181) 0.63 [0.57–0.69] 1.59 [1.44–1.76] 2.27 [1.91–2.71] 2.54 [2.08–3.10]

Hazard ratios (HRs) are shown comparing men in the highest 2% of genetic risk (≥98th percentile of PHS), highest 20% of genetic risk (≥80th percentile), average risk (30–70th percentile), and lowest
20% of genetic risk (≤20th percentile) across genetic ancestry. p Values reported are two-tailed from the Cox models.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21287-0

2 NATURE COMMUNICATIONS |         (2021) 12:1236 | https://doi.org/10.1038/s41467-021-21287-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


cluster 1, cluster 2, and admixed cluster, respectively. Corre-
sponding results for the K= 3–6 clustering approaches are shown
in the Supplementary Information.

Self-reported race/ethnicity. HRs for aggressive prostate cancer
comparing the 80th and 20th percentiles of genetic risk when
participants are stratified by their self-reported race/ethnicity are
shown in the Supplementary Information.

Discussion
These results confirm the previously reported association of PHS
with age at prostate cancer diagnosis in Europeans and show that this
finding generalizes to a multi-ethnic dataset, including men of Eur-
opean, Asian, and African ancestry. PHS is also associated with age at
aggressive prostate cancer diagnosis and at prostate cancer death.
Comparing the highest and lowest quintiles of genetic risk, men with
high PHS had HRs of 5.32, 5.88, and 5.68 for any prostate cancer,
aggressive prostate cancer, and prostate cancer death, respectively.

We found that PHS is associated with prostate cancer in men of
European, Asian, and African genetic ancestry (and a wider range of
self-reported race/ethnicities). Current prostate cancer screening
guidelines suggest possible initiation at earlier ages for men of African
ancestry, given higher incidence rates and worse survival when
compared to men of European ancestry26. Using the PHS to risk-
stratify men might help with decisions regarding when to initiate
prostate cancer screening: perhaps a man with African genetic
ancestry in the lowest percentiles of genetic risk by PHS could safely
delay or forgo screening to decrease the possible harms associated
with overdetection and overtreatment9, while a man in the highest
risk percentiles might consider screening at an earlier age. Similar

Table 2 Association of PHS with aggressive prostate cancer.

OncoArray genetic
ancestry

z (p Value) Hazard ratios [95% CI] comparing percentiles of PHS2

HR20/50: ≤20th
vs. 30–70th

HR80/50: ≥80th
vs. 30–70th

HR98/50: ≥98th
vs. 30–70th

HR80/20: ≥80th
vs. ≤20th

All (n= 58,600) 47.6 (p < 10−300) 0.43 [0.41–0.44] 2.50 [2.42–2.60] 4.61 [4.33–4.90] 5.88 [5.48–6.34]
European (n= 53,608) 46.4 (p < 10−300) 0.44 [0.42–0.45] 2.45 [2.36–2.55] 4.40 [4.15–4.70] 5.62 [5.25–6.05]
Asian (n= 1806) 43.8 (p < 10−300) 0.45 [0.37–0.55] 2.32 [1.88–2.89] 4.14 [2.92–6.03] 5.16 [3.45–7.78]
African (n= 3186) 23.6 (p= 7.2 × 10−123) 0.64 [0.49–0.81] 1.55 [1.23–2.00] 2.18 [1.44–3.43] 2.43 [1.51–4.05]

Hazard ratios (HRs) derived from Cox proportional hazards models are shown comparing men in the highest 2% of genetic risk (≥98th percentile of PHS), highest 20% of genetic risk (≥80th percentile),
average risk (30–70th percentile), and lowest 20% of genetic risk (≤20th percentile) across genetic ancestry. p Values reported are two-tailed from the Cox models.

Table 3 Association of PHS with death from prostate cancer.

Ancestry z (p Value) Hazard ratios [95% CI] comparing percentiles of PHS2

HR20/50: ≤20th vs.
30–70th

HR80/50: ≥80th
vs. 30-70th

HR98/50: ≥98th
vs. 30–70th

HR80/20: ≥80th
vs. ≤20th

All
(n= 78,221)

15.9 (p= 6.3 × 10−57) 0.43 [0.41–0.56] 2.47 [2.33–2.64] 4.46 [4.04–4.98] 5.68 [5.07–6.46]

Hazard ratios (HRs) from Cox proportional hazards models are shown comparing men in the highest 2% of genetic risk (≥98th percentile of PHS), highest 20% of genetic risk (≥80th percentile),
average risk (30–70th percentile), and lowest 20% of genetic risk (≤20th percentile). p Values reported are two-tailed from the Cox models.

Table 4 Multivariable models with both PHS and family history of prostate cancer (≥1 first-degree relative affected) for
association with any prostate cancer in the multi-ethnic dataset, and by genetic ancestry.

OncoArray genetic ancestry Variable beta z-score p Value HR

All (n= 46,030) PHS 1.98 53.3 <10−300 4.48
Family history 0.94 38.6 <10−300 2.55

European (n= 39,445) PHS 2.06 56.2 <10−300 4.80
Family history 0.92 38.1 <10−300 2.50

Asian (n= 1028) PHS 1.89 50.7 <10−300 4.17
Family history 0.72 21.2 9.5 × 10−100 2.05

African (n= 5557) PHS 1.11 26.2 2.6 × 10−151 2.22
Family history 1.14 46.7 <10−300 3.11

This analysis is limited to individuals with known family history. Both family history and PHS were significantly associated with any prostate cancer in the combined models. Hazard ratios (HRs) for family
history were calculated as the exponent of the beta from the multivariable Cox proportional hazards regression56. The HR for PHS in the multivariable models was estimated as the HR80/20 (men in the
highest 20% vs. those in the lowest 20% of genetic risk by PHS2) in each cohort. p Values reported are two-tailed from the Cox models. The model with PHS performed better than family history alone
(log-likelihood p < 10−300).

Table 5 Association of PHS with aggressive prostate cancer,
by two clusters using fastSTRUCTURE.

fastSTRUCTURE K Cluster HR80/20: ≥80th
vs. ≤20th

K= 2 1 5.60 [5.55–5.64]
2 2.06 [2.03–2.09]
Admixed 5.05 [4.89–5.21]

Hazard ratios (HRs) from Cox proportional hazards models are shown comparing men in the
highest 20% of genetic risk (≥80th percentile) vs. the lowest 20% of genetic risk (≤20th
percentile).
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reasoning applies to men of all genetic ancestries. Risk-stratified
screening should be prospectively evaluated.

PHS performance was better in those with OncoArray-defined
European and Asian genetic ancestry than in those with African
ancestry. For example, comparing the highest and lowest quintiles
of genetic risk, men with OncoArray-defined European and Asian
genetic ancestry with high PHS had HRs for any prostate cancer
of 5.54 and 4.49 times, respectively, while the analogous HR for
men of African genetic ancestry was 2.54. This trend was also
observed for aggressive prostate cancer. Moreover, the optimal
fastSTRUCTURE clustering of our dataset (K= 2) yielded one
cluster that consisted of almost only men of African ancestry (by
both self-report and OncoArray-defined genetic ancestry) and
had inferior risk stratification with PHS2 (HR 2.06), compared to
the performance observed in the other cluster (nearly all Eur-
opean) and an admixed cluster (HRs 5.60 and 5.05, respectively).
Overall, these results suggest PHS can differentiate men of higher
and lower risk in each ancestral group, but the range of risk levels
may be narrower in those of African ancestry. Possible reasons for
relatively diminished performance include increased genetic
diversity with less linkage disequilibrium in those of African
genetic ancestry27–29. Known health disparities may also con-
tribute25, as the availability—and timing—of PSA results may
depend on healthcare access. Alarmingly, there has historically
been a poor representation of African populations in clinical or
genomic research studies20,21. This pattern is reflected in the
present study, where most men of African genetic ancestry were
missing clinical diagnosis information used to determine disease
aggressiveness. That such clinical information is less available for
men of African ancestry also leaves open the possibility of sys-
tematic differences in the diagnostic workup—and therefore the
age of diagnosis—across different ancestry populations. These are
critical health disparities that will need to be addressed (and
ultimately eliminated) to ensure equitable and accurate genomic
prostate cancer stratification for all men. Notwithstanding these
caveats, the present PHS is associated with age at prostate cancer
diagnosis in men of African ancestry, possibly paving the way for
more personalized screening decisions for men of African des-
cent. Promising efforts are also underway to further improve PHS
performance in men of African ancestry30.

The first PHS validation study used data from ProtecT, a large
prostate cancer trial2,13. ProtecT’s screening design yielded biopsy
results from both controls and cases with PSA ≥ 3 ng/mL, making
it possible to demonstrate improved accuracy and efficiency of
prostate cancer screening with PSA testing. Limitations of the
ProtecT analysis, though, include few recorded prostate cancer
deaths in the available data, and the exclusion of advanced cancer
from that trial2. The present study includes long-term observa-
tion, with both early and advanced disease18, allowing for eva-
luation of PHS association with any, aggressive, and fatal prostate
cancer; we found PHS to be associated with all outcomes.

Age is critical in clinical decisions of whether men should be
offered prostate cancer screening31–34 and in how to treat men
diagnosed with prostate cancer31,32. Age may also inform prog-
nosis32,35. Age at diagnosis or death is therefore of clinical interest
in inferring how likely a man is to develop cancer at an age when
he may benefit from treatment. One important advantage of the
survival analysis used here is that it permits men without cancer
at the time of the last follow-up to be censored while allowing for
the possibility of them developing prostate cancer (including
aggressive or fatal prostate cancer) later on. prostate cancer death
is a hard endpoint with less uncertainty than clinical diagnosis
(which may vary with screening practices and delayed medical
attention). PHS may help identify men with a high (or low)
genetic predisposition to develop lethal prostate cancer and could
assist physicians in deciding when to initiate screening.

Current guidelines suggest considering a man’s individual
cancer risk factors, overall life expectancy, and medical comor-
bidities when deciding whether to screen6. The most prominent
clinical risk factors used in practice are family history and race/
ethnicity6,36,37. Combined PHS and family history performed
better than either alone in this multi-ethnic dataset. This finding
is consistent with a prior report that PHS adds considerable
information over family history alone. The prior study did not
find an association of family history with age at prostate cancer
diagnosis, perhaps because the universal screening approach of
the ProtecT trial diluted the influence of family history on who is
screened in typical practice13. In the present study, family history
and PHS appear complementary in assessing prostate cancer
genetic risk. Moreover, the HRs for PHS suggest clinical relevance
similar or greater to predictive tools routinely used for cancer
screening (e.g., breast cancer) and for other diseases (e.g., diabetes
and cardiovascular disease). HRs reported for those tools are
around 1–3 for disease development or other adverse
outcome38–42; HRs reported here for PHS (for any, aggressive, or
fatal prostate cancer) are similar or greater.

Limitations to this work include that the dataset comes from
multiple, heterogeneous studies, from various populations with
variable screening rates. This allowed for a large, multi-ethnic
dataset that includes clinical and survival data, but comes with
uncertainties avoided in the ProtecT dataset used for original vali-
dation. However, the heterogeneity would likely reduce the PHS
performance, not systematically inflate the results. Second, we note
that no germline SNP tool, including this PHS, has been shown to
discriminate men at risk of aggressive prostate cancer from those at
risk of only indolent prostate cancer. Third, while the OncoArray-
defined and fastSTRUCTURE genetic ancestry classifications used
here may be more accurate than self-reported race/ethnicity alone43

and allowed for evaluation of admixed genetic ancestry, detailed
analysis of local ancestry was not assessed. As noted above, clinical
data availability was not uniform across contributing studies and
was lower in men of OncoArray-defined African genetic ancestry.
Efforts to improve genetic risk prediction should focus on con-
sistent data collection patterns and elimination of data disparities so
that models are widely applicable for all men. We also found that
while the optimal fastSTRUCTURE model had K= 2 clusters for
risk stratification men for aggressive prostate cancer, models with
more K clusters also produced comparable (or larger ranges) of
hazard ratios for risk stratification. The ability of these models with
more K clusters to risk-stratify men well (while possibly being less
representative of the available data) emphasizes the dire need for
more complex and deeper studies evaluating the intersection of
genetics, the granularity of ancestry, and prostate cancer risk. In
addition, the PHS may not include all SNPs associated with prostate
cancer; in fact, over 60 additional SNPs have been reported since
the development of the original PHS18. Some of these SNPs are
ethnicity-specific, including within non-European populations44–46,
and will be included in further model optimization to improve
prostate cancer risk stratification. Future work could also evaluate
the PHS performance in relation to epidemiological risk factors
associated with prostate cancer risk beyond those currently used in
clinical practice (i.e., family history and race/ethnicity). Finally,
various circumstances and disease-modifying treatments may have
influenced post-diagnosis survival to an unknown degree. Despite
this possible source of variability in survival among men with fatal
prostate cancer, PHS was still associated with age at death, an
objective, and meaningful endpoint. Future development and
optimization hold promise for improving upon the encouraging
risk stratification achieved here in men of different genetic ances-
tries, particularly African.

In summary, PHS was associated with age at any and aggressive
prostate cancer, and at death from prostate cancer in a multi-ethnic
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dataset. PHS performance was relatively diminished in men of
African genetic ancestry, compared to performance in men of
European or Asian genetic ancestry. PHS risk-stratifies men of
various genetic ancestries for prostate cancer and should be pro-
spectively studied as a means to individualize screening strategies
seeking to reduce prostate cancer morbidity and mortality.

Methods
Participants. We obtained data from the OncoArray project47 that had undergone
quality control steps18. This dataset includes 91,480 men with genotype and phe-
notype data from 64 studies (Supplementary Information). Individuals whose data
were used in the prior development or validation of the original PHS model (PHS1)
were excluded (n= 10,989)13, leaving 80,491 in the independent dataset used here.
Table 6 describes available data. Individuals not meeting the endpoint for each
analysis were censored at age of last follow-up.

All contributing studies were approved by the relevant ethics committees;
written informed consent was acquired from the study participants48. The present
analyses used de-identified data from the PRACTICAL consortium.

Polygenic hazard score. The original PHS1 was validated for association with age at
prostate cancer diagnosis in men of European ancestry using a survival analysis13. To
ensure the score was not simply identifying men at risk of indolent disease, PHS1 was
also validated for association with age at aggressive prostate cancer (defined as an
intermediate-risk disease, or above6) diagnosis13. PHS1 was calculated as the vector
product of a patient’s genotype (Xi) for n selected SNPs and the corresponding para-
meter estimates (βi) from a Cox proportional hazards regression:

PHS ¼
Xn

i

Xiβi ð1Þ

The 54 SNPs in PHS1 were selected using PRACTICAL consortium data
(n= 31,747 men) genotyped with a custom array (iCOGS, Illumina, San Diego, CA)13.

Adapting the PHS to OncoArray. Genotyping for the present study was per-
formed using a commercially available, cancer-specific array (OncoArray, Illumina,
San Diego, CA)18. Twenty-four of the 54 SNPs in PHS1 were directly genotyped on
OncoArray. We identified proxy SNPs for those not directly genotyped and re-
calculated the SNP weights in the same dataset used for the original development of
PHS113 (Supplementary Methods).

The performance of the adapted PHS (PHS2), was compared to that of PHS1 in
the ProtecT dataset originally used to validate PHS1 (n= 6411). PHS2 was
calculated for all patients in the ProtecT validation set and was tested as the sole
predictive variable in a Cox proportional hazards regression model (R v.3.5.1,
“survival” package49) for age at aggressive prostate cancer diagnosis, the primary
endpoint of that study. The performance was assessed by the metrics reported
during the PHS1 development:13 z-score and hazard ratio (HR98/50) for aggressive
prostate cancer between men in the highest 2% of genetic risk (≥98th percentile) vs.
those with average risk (30–70th percentile). HR 95% confidence intervals (CIs)
were determined by bootstrapping 1000 random samples from the ProtecT
dataset50,51 while maintaining the same number of cases and controls. PHS2
percentile thresholds are shown in the Supplementary Information.

OncoArray-defined genetic ancestry. Self-reported race/ethnicities47,52, included
European, Black, or African American (includes Black African, Black Caribbean),
East Asian, South Asian, Hawaiian, Hispanic American, and Other/Unknown.

Genetic ancestry for each individual from the OncoArray project47 was
provided with the PRACTICAL consortium data. Briefly, genotypes from 2318
ancestry informative markers were mapped into a two-dimensional space
representing the first two principal components, which has been shown to yield
results very similar to those obtained with the STRUCTURE approach52. The
distance from the individual’s mapping to the three reference clusters (European,
African, and Asian) was then used to estimate the individual’s genetic ancestry47,52.
Individuals were classified into one of three OncoArray-defined labels; European:
greater than 80% European ancestry, Asian: greater than 40% Asian ancestry, and
African: greater than 20% African ancestry. Individuals not meeting any of the
aforementioned three labels were classified as “other,” but all of the individuals in
the present prostate cancer dataset met the criteria for one of the three OncoArray-
defined genetic ancestries.

Any prostate cancer. We tested PHS2 for association with age at diagnosis of any
prostate cancer in the multi-ethnic dataset (n= 80,491, Table 6).

PHS2 was calculated for all patients in the multi-ethnic dataset and used as the
sole independent variable in Cox proportional hazards regressions for the endpoint
of age at prostate cancer diagnosis. Due to the potential for Cox proportional
hazards results to be biased by a higher number of cases in our dataset than in the
general population, sample-weight corrections were applied to all Cox models
using population data from Sweden13,53 (additional details are in Supplementary
Information). Significance was set at α= 0.0113.

These Cox proportional hazards regressions (with PHS2 as the sole independent
variable and age at prostate cancer diagnosis as the outcome) were then repeated
for subsets of data, stratified by OncoArray-defined genetic ancestry: European,
Asian, and African. Percentiles of genetic risk were calculated using data from the
9,728 men in the original (iCOGS) development set who were less than 70 years old
and without prostate cancer13,54. HRs and 95% CIs for each genetic ancestry group
were calculated to make the following comparisons: HR98/50, men in the highest 2%
of genetic risk vs. those with average risk (30–70th percentile); HR80/50, men in the
highest 20% vs. those with average risk, HR20/50, men in the lowest 20% vs. those
with average risk; and HR80/20, men in the highest 20% vs. lowest 20%. CIs were
determined by bootstrapping 1000 random samples from each genetic ancestry
group50,51 while maintaining the same number of cases and controls. HRs and CIs
were calculated for age at prostate cancer diagnosis separately for each genetic
ancestry group.

Given that the overall incidence of prostate cancer in different populations
varies, we performed a sensitivity analysis of the population case/control numbers,
allowing the population incidence to vary from 25 to 400% of that reported in
Sweden (chosen as an example population; Supplementary Information).

Aggressive prostate cancer. Recognizing that not all prostate cancer is clinically
significant, we also tested PHS2 for association with age at aggressive prostate
cancer diagnosis in the multi-ethnic dataset. For these analyses, we included cases
that had known tumor stage, Gleason score, and PSA at diagnosis (n= 60,617
cases, Table 6). Aggressive prostate cancer cases were those that met any of the
following criteria6,13: Gleason score ≥7, PSA ≥ 10 ng/mL, T3–T4 stage, nodal
metastases, or distant metastases. As before, Cox proportional hazards models and
sensitivity analysis were used to assess the association.

Fatal prostate cancer. Using an even stricter definition of clinical significance, we
evaluated the association of PHS2 with age at prostate cancer death in the multi-
ethnic dataset. All cases (regardless of staging completeness) and controls were
included, and the endpoint was the age at death due to prostate cancer. This
analysis was not stratified by genetic ancestry due to low numbers of recorded
prostate cancer deaths in the non-European datasets. The cause of death was

Table 6 Participant characteristics, n= 80,491.

OncoArray-defined genetic ancestry

All European Asian African

Participants
Controls 30,575 26,377 1185 3013
Prostate cancer cases 49,916 45,479 1197 3240
Aggressive prostate cancer casesa 26,419 24,279 716 1424
Fatal prostate cancer cases 3983 3908 57 18
Number of participants with known first-degree family history information
Family history of prostate cancer available (prostate cancer cases;
controls)

46,030
(28,204; 17,826)

39,445
(24,921; 14,524)

1,028
(519; 509)

5,557
(2,764; 2,793)

Age demographics
Median age, at diagnosis (IQR) 65 [60–71] 66 [60–71] 68 [62–74] 62 [56–68]
Median age, at last follow up (IQR) 70 [63–76] 70 [64–77] 70 [63–76] 62 [56–68]

aAggressive prostate cancer defined as: Gleason scores ≥7, PSA≥ 10 ng/mL, T3–T4 stage, nodal metastases, or distant metastases.
IQR interquartile range.
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determined by the investigators of each contributing study using cancer registries
and/or medical records (Supplementary Information). At last follow-up, 3983 men
had died from prostate cancer, 5806 had died from non-prostate cancer causes, and
70,702 were still alive. The median age at the last follow-up was 70 years (IQR:
63–76). As before, Cox proportional hazards models and sensitivity analysis were
used to assess the association.

PHS and family history. Prostate cancer family history was also tested for asso-
ciation with any, aggressive, or fatal prostate cancer. Information on family history
was standardized across studies included in PRACTICAL consortium data. A
family history of prostate cancer was defined as the presence or absence of a first-
degree relative with a prostate cancer diagnosis. There were 46,030 men with
available prostate cancer family history data.

Cox proportional hazards models were used to assess family history for
association with any, aggressive, or fatal prostate cancer. To evaluate the relative
importance of each, a multivariable model using both family history and PHS was
compared to using family history alone (log-likelihood test; α= 0.01). HRs were
calculated for each variable.

Explorations of alternative ancestry groupings
Agnostic genetic ancestry groupings with FastSTRUCTURE. The primary analyses,
above, used OncoArray-defined genetic ancestries, as prior reports have shown
genetic ancestry may be more informative than self-reported race/ethnicities43.
However, for the purpose of this study, the OncoArray-defined categories may
underestimate the impact of the inherent complexity of human genetic ancestry.
Therefore, we further explored the impact of an array of alternative genetic
ancestry subgroup definitions on PHS2 performance using fastSTRUCTURE55,
which infers global admixture/ancestry via a Bayesian approach. We ran fas-
tSTRUCTURE v1.0 on all individuals in the multi-ethnic dataset using approxi-
mately 2300 ancestry informative markers and multiple (K) levels of population
complexity to agnostically cluster the data into K= 2–6 populations. For each
iteration of K populations, participants were placed into the cluster for which their
maximum admixture proportion was ≥0.8. Those participants without a cluster for
which their maximum admixture proportion was ≥0.8 were placed into a separate
group termed “admixed.” The optimal number of clusters (K) for fastSTRUCTURE
was chosen as that which maximized the marginal likelihood of the data55. PHS2
was evaluated for association with aggressive prostate cancer (HR80/20) after stra-
tification by each K population subgroup.

A comparison of fastSTRUCTURE clustering, OncoArray-determined genetic
ancestry, and self-reported race/ethnicity was compiled. OncoArray-defined
genetic ancestry was mostly concordant with self-reported race/ethnicity.
Participants with other/unknown self-reported race/ethnicity were mostly grouped
into OncoArray’s European genetic ancestry. Additional details are shown in the
Supplementary Information.

Self-reported race/ethnicity. Finally, we also evaluated PHS performance for association
with aggressive prostate cancer using participants’ self-reported race/ethnicity.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
PRACTICAL consortium data are available upon request to the Data Access Committee
(http://practical.icr.ac.uk/blog/?page_id=135). Questions and requests for further
information may be directed to PRACTICAL@icr.ac.uk. All other data are available
within the Article, Supplementary information, or upon request to the authors.

Code availability
Code used for this work has been made available along with this paper (Supplementary
Software 1).
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