133 research outputs found

    Universal optical transmission features in periodic and quasiperiodic hole arrays

    Get PDF
    We investigate the influence of array order in the optical transmission properties of subwavelength hole arrays, by comparing the experimental spectral transmittance of periodic and quasiperiodic hole arrays as a function of frequency. We find that periodicity and long-range order are not necessary requirements for obtaining enhanced and suppressed optical transmission, provided short-range order is maintained. Transmission maxima and minima are shown to result, respectively, from constructive and destructive interference at each hole, between the light incident upon and exiting from a given hole, and surface plasmon polaritons (SPPs) arriving from individual neighboring holes. These SPPs are launched along both illuminated and exit surfaces, by diffraction of the incident and emerging light at the neighboring individual subwavelength holes. By characterizing the optical transmission of a pair of subwavelength holes as a function of hole-hole distance, we demonstrate that a subwavelength hole can launch SPPs with an efficiency up to 35%, and with an experimentally determined launch phase φ = π/2, for both input-side and exit-side SPPs. This characteristic phase has a crucial influence on the shape of the transmission spectra, determining transmission minima in periodic arrays at those frequencies where grating coupling arguments would instead predict maxima

    Periarticular Mesenchymal Progenitors Initiate and Contribute to Secondary Ossification Center Formation During Mouse Long Bone Development

    Get PDF
    Long bone development involves the embryonic formation of a primary ossification center (POC) in the incipient diaphysis followed by postnatal development of a secondary ossification center (SOC) at each epiphysis. Studies have elucidated major basic mechanisms of POC development, but relatively little is known about SOC development. To gain insights into SOC formation, we used Col2-Cre Rosa-tdTomato (Col2/Tomato) reporter mice and found that their periarticular region contained numerous Tomato-positive lineage cells expressing much higher Tomato fluorescence (termed TomatoH) than underlying epiphyseal chondrocytes (termed TomatoL). With time, the TomatoH cells became evident at the SOC invagination site and cartilage canal, increased in number in the expanding SOC, and were present as mesenchymal lineage cells in the subchondral bone. These data were verified in two mouse lineage tracing models, Col2-CreER Rosa-tdTomato and Glil-CreER Rosa-tdTomato. In vitro tests showed that the periarticular TomatoH cells from Col2/Tomato mice contained mesenchymal progenitors with multidifferentiation abilities. During canal initiation, the cells expressed vascular endothelial growth factor (VEGF) and migrated into epiphyseal cartilage ahead of individual or clusters of endothelial cells, suggesting a unique role in promoting vasculogenesis. Later during SOC expansion, chondrocytes in epiphyseal cartilage expressed VEGF, and angiogenic blood vessels preceded TomatoH cells. Gene expression analyses of microdissected samples revealed upregulation of MMPs in periarticular cells at the invagination site and suggested potential roles for novel kinase and growth factor signaling pathways in regulating SOC canal initiation. In summary, our data indicate that the periarticular region surrounding epiphyseal cartilage contains mesenchymal progenitors that initiate SOC development and forms subchondral bone

    T Lymphocytes Amplify the Anabolic Activity of Parathyroid Hormone through Wnt10b Signaling

    Get PDF
    SummaryIntermittent administration of parathyroid hormone (iPTH) is used to treat osteoporosis because it improves bone architecture and strength, but the underlying cellular and molecular mechanisms are unclear. Here, we show that iPTH increases the production of Wnt10b by bone marrow CD8+ T cells and induces these lymphocytes to activate canonical Wnt signaling in preosteoblasts. Accordingly, in responses to iPTH, T cell null mice display diminished Wnt signaling in preosteoblasts and blunted osteoblastic commitment, proliferation, differentiation, and life span, which result in decreased trabecular bone anabolism and no increase in strength. Demonstrating the specific role of lymphocytic Wnt10b, iPTH has no anabolic activity in mice lacking T-cell-produced Wnt10b. Therefore, T-cell-mediated activation of Wnt signaling in osteoblastic cells plays a key permissive role in the mechanism by which iPTH increases bone strength, suggesting that T cell osteoblast crosstalk pathways may provide pharmacological targets for bone anabolism

    A new method for classifying galaxy SEDs from multiwavelength photometry

    Get PDF
    We present a new method to classify the broad-band optical–near-infrared spectral energy distributions (SEDs) of galaxies using three shape parameters (super-colours) based on a principal component analysis of model SEDs. As well as providing a compact representation of the wide variety of SED shapes, the method allows for easy visualization of information loss and biases caused by the incomplete sampling of the rest-frame SED as a function of redshift. We apply the method to galaxies in the United Kingdom Infrared Telescope Infrared Deep Sky Survey Ultra Deep Survey with 0.9 11, declining steadily to 13 per cent at logM∗/M_ = 10. The properties and mass function of the poststarburst galaxies are consistent with a scenario in which gas-rich mergers contribute to the growth of the low- and intermediate-mass range of the red sequence

    Fibrodysplasia Ossificans Progressiva: what have we achieved and where are we now? follow-up to the 2015 Lorentz Workshop

    Get PDF
    Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare progressive genetic disease effecting one in a million individuals. During their life, patients with FOP progressively develop bone in the soft tissues resulting in increasing immobility and early death. A mutation in the ACVR1 gene was identified as the causative mutation of FOP in 2006. After this, the pathophysiology of FOP has been further elucidated through the efforts of research groups worldwide. In 2015, a workshop was held to gather these groups and discuss the new challenges in FOP research. Here we present an overview and update on these topics

    The JWST UNCOVER Treasury survey: Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization

    Full text link
    In this paper we describe the survey design for the Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) Cycle 1 JWST Treasury program, which executed its early imaging component in November 2022. The UNCOVER survey includes ultradeep (2930AB\sim29-30\mathrm{AB}) imaging of \sim45 arcmin2^2 on and around the well-studied Abell 2744 galaxy cluster at z=0.308z=0.308 and will follow-up 500{\sim}500 galaxies with extremely deep low-resolution spectroscopy with the NIRSpec/PRISM during the summer of 2023. We describe the science goals, survey design, target selection, and planned data releases. We also present and characterize the depths of the first NIRCam imaging mosaic, highlighting previously unparalleled resolved and ultradeep 2-4 micron imaging of known objects in the field. The UNCOVER primary NIRCam mosaic spans 28.8 arcmin2^2 in seven filters (F115W, F150W, F200W, F277W, F356W, F410M, F444W) and 16.8 arcmin2^2 in our NIRISS parallel (F115W, F150W, F200W, F356W, and F444W). To maximize early community use of the Treasury data set, we publicly release full reduced mosaics of public JWST imaging including 45 arcmin2^2 NIRCam and 17 arcmin2^2 NIRISS mosaics on and around the Abell 2744 cluster, including the Hubble Frontier Field primary and parallel footprints.Comment: 17 pages, 8 figures, 4 tables, submitted to ApJ, comments welcome (v2 with full author list in metadata

    The relative efficacy of nine osteoporosis medications for reducing the rate of fractures in post-menopausal women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the absence of head-to-head trials, indirect comparisons of randomized placebo-controlled trials may provide a viable option to assess relative efficacy. The purpose was to estimate the relative efficacy of reduction of fractures in post-menopausal women, and to assess robustness of the results.</p> <p>Methods</p> <p>A systematic literature review of multiple databases identified randomized placebo-controlled trials with nine drugs for post-menopausal women. Odds ratio and 95% credibility intervals for the rates of hip, non-vertebral, vertebral, and wrist fractures for each drug and between drugs were derived using a Bayesian approach. A drug was ranked as the most efficacious if it had the highest posterior odds ratio, or had the highest effect size.</p> <p>Results</p> <p>30 studies including 59,209 patients reported fracture rates for nine drugs: alendronate (6 studies), denosumab (1 study), etidronate (8 studies), ibandronate (4 studies), raloxifene (1 study), risedronate (7 studies), strontium (2 study), teriparatide (1 study), and zoledronic acid (1 study). The drugs with the highest probability of reducing non-vertebral fractures was etidronate and teriparatide while the drugs with the highest probability of reducing vertebral, hip or wrist fractures were teriparatide, zoledronic acid and denosumab. The drugs with the largest effect size for vertebral fractures were zoledronic acid, teriparatide and denosumab, while the drugs with the highest effect size for non-vertebral, hip or wrist fractures were alendronate or risedronate. Estimates were consistent between Bayesian and classical approaches.</p> <p>Conclusion</p> <p>Teriparatide, zoledronic acid and denosumab have the highest probabilities of being most efficacious for non-vertebral and vertebral fractures, and having the greatest effect sizes. The estimates from indirect comparisons were robust to differences in methodology.</p

    Insights into the content and spatial distribution of dust from the integrated spectral properties of galaxies

    Get PDF
    [Abridged] We present a new approach to investigate the content and spatial distribution of dust in structurally unresolved star-forming galaxies from the observed dependence of integrated spectral properties on galaxy inclination. We develop an innovative combination of generic models of radiative transfer (RT) in dusty media with a prescription for the spectral evolution of galaxies, via the association of different geometric components of galaxies with stars in different age ranges. We show that a wide range of RT models all predict a quasi-universal relation between slope of the attenuation curve at any wavelength and V-band attenuation optical depth in the diffuse interstellar medium (ISM), at all galaxy inclinations. This relation predicts steeper (shallower) dust attenuation curves than both the Calzetti and MW curves at small (large) attenuation optical depths, which implies that geometry and orientation effects have a stronger influence on the shape of the attenuation curve than changes in the optical properties of dust grains. We use our combined RT and spectral evolution model to interpret the observed dependence of the H\alpha/H\beta\ ratio and ugrizYJH attenuation curve on inclination in a sample of ~23 000 nearby star-forming galaxies. From a Bayesian MCMC fit, we measure the central face-on B-band optical depth of this sample to be tau_B\perp~1.8\pm0.2. We also quantify the enhanced optical depth towards newly formed stars in their birth clouds, finding this to be significantly larger in galaxies with bulges than in disc-dominated galaxies, while tau_B\perp is roughly similar in both cases. Finally, we show that neglecting the effect of geometry and orientation on attenuation can severely bias the interpretation of galaxy spectral energy distributions, as the impact on broadband colours can reach up to 0.3-0.4 mag at optical wavelengths and 0.1 mag at near-infrared ones.Comment: 32 pages, 3 tables, 41 figures, MNRAS in-pres

    MiR-133a in Human Circulating Monocytes: A Potential Biomarker Associated with Postmenopausal Osteoporosis

    Get PDF
    Background: Osteoporosis mainly occurs in postmenopausal women, which is characterized by low bone mineral density (BMD) due to unbalanced bone resorption by osteoclasts and formation by osteoblasts. Circulating monocytes play important roles in osteoclastogenesis by acting as osteoclast precursors and secreting osteoclastogenic factors, such as IL-1, IL-6 and TNF-a. MicroRNAs (miRNAs) have been implicated as important biomarkers in various diseases. The present study aimed to find significant miRNA biomarkers in human circulating monocytes underlying postmenopausal osteoporosis. Methodology/Principal Findings: We used ABI TaqManH miRNA array followed by qRT-PCR validation in circulating monocytes to identify miRNA biomarkers in 10 high and 10 low BMD postmenopausal Caucasian women. MiR-133a was upregulated (P = 0.007) in the low compared with the high BMD groups in the array analyses, which was also validated by qRT-PCR (P = 0.044). We performed bioinformatic target gene analysis and found three potential osteoclast-related target genes, CXCL11, CXCR3 and SLC39A1. In addition, we performed Pearson correlation analyses between the expression levels of miR-133a and the three potential target genes in the 20 postmenopausal women. We did find negative correlations between miR-133a and all the three genes though not significant. Conclusions/Significance: This is the first in vivo miRNA expression analysis in human circulating monocytes to identif
    corecore