81 research outputs found

    Unbalance between Excitation and Inhibition in Phenylketonuria, a Genetic Metabolic Disease Associated with Autism

    Get PDF
    Phenylketonuria (PKU) is the most common genetic metabolic disease with a well-documented association with autism spectrum disorders. It is characterized by the deficiency of the phenylalanine hydroxylase activity, causing plasmatic hyperphenylalaninemia and variable neurological and cognitive impairments. Among the potential pathophysiological mechanisms implicated in autism spectrum disorders is the excitation/inhibition (E/I) imbalance which might result from alterations in excitatory/inhibitory synapse development, synaptic transmission and plasticity, downstream signalling pathways, and intrinsic neuronal excitability. Here, we investigated functional and molecular alterations in the prefrontal cortex (pFC) of BTBR-Pah(enu2) (ENU2) mice, the animal model of PKU. Our data show higher frequency of inhibitory transmissions and significant reduced frequency of excitatory transmissions in the PKU-affected mice in comparison to wild type. Moreover, in the pFC of ENU2 mice, we reported higher levels of the post-synaptic cell-adhesion proteins neuroligin1 and 2. Altogether, our data point toward an imbalance in the E/I neurotransmission favouring inhibition in the pFC of ENU2 mice, along with alterations of the molecular components involved in the organization of cortical synapse. In addition to being the first evidence of E/I imbalance within cortical areas of a mouse model of PKU, our study provides further evidence of E/I imbalance in animal models of pathology associated with autism spectrum disorders

    Targeting mGlu5 metabotropic glutamate receptors in the treatment of cognitive dysfunction in a mouse model of phenylketonuria

    Get PDF
    We studied group-I metabotropic glutamate (mGlu) receptors in Pah(enu2) (ENU2) mice, which mimic the genetics and neurobiology of human phenylketonuria (PKU), a metabolic disorder characterized, if untreated, by autism, and intellectual disability (ID). Male ENU2 mice showed increased mGlu5 receptor protein levels in the hippocampus and corpus striatum (but not in the prefrontal cortex) whereas the transcript of the mGlu5 receptor was unchanged. No changes in mGlu1 receptor mRNA and protein levels were found in any of the three brain regions of ENU2 mice. We extended the analysis to Homer proteins, which act as scaffolds by linking mGlu1 and mGlu5 receptors to effector proteins. Expression of the long isoforms of Homer was significantly reduced in the hippocampus of ENU2 mice, whereas levels of the short Homer isoform (Homer 1a) were unchanged. mGlu5 receptors were less associated to immunoprecipitated Homer in the hippocampus of ENU2 mice. The lack of mGlu5 receptor-mediated long-term depression (LTD) in wild-type mice (of BTBR strain) precluded the analysis of hippocampal synaptic plasticity in ENU2 mice. We therefore performed a behavioral analysis to examine whether pharmacological blockade of mGlu5 receptors could correct behavioral abnormalities in ENU2 mice. Using the same apparatus we sequentially assessed locomotor activity, object exploration, and spatial object recognition (spatial novelty test) after displacing some of the objects from their original position in the arena. Systemic treatment with the mGlu5 receptor antagonist, MPEP (20 mg/kg, i.p.), had a striking effect in the spatial novelty test by substantially increasing the time spent in exploring the displaced objects in ENU2 mice (but not in wild-type mice). These suggest a role for mGlu5 receptors in the pathophysiology of ID in PKU and suggest that, also in adult untreated animals, cognitive dysfunction may be improved by targeting these receptors with an appropriate therapy

    d aspartate exerts an opposing role upon age dependent nmdar related synaptic plasticity and memory decay

    Get PDF
    In the present study, we demonstrated that D-aspartate acts as an _in vitro_ and _in vivo_ neuromodulatory molecule upon hippocampal NMDAR transmission. Accordingly, we showed that this D-amino acid, widely expressed during embryonic phase, was able to strongly influence hippocampus-related functions at adulthood. Thus, while up-regulated levels of D-aspartate increased LTP and spatial memory in four-month old adult mice, the prolonged deregulation of this molecule in thirteen-month old animals induced a substantial acceleration of age-dependent decay of synaptic plasticity and cognitive functions. Moreover, we highlighted a role for D-aspartate in enhancing NMDAR-dependent synaptic plasticity through an inducible "turn-on/turn-off-like mechanism". Strikingly, we also showed that D-aspartate, when administered to aged mice, strongly rescued their physiological synaptic decay and attenuated their cognitive deterioration. In conclusion, our data suggest a tantalizing hypothesis for which this in-embryo-occurring D-amino acid, might disclose plasticity windows in the aging brain

    Defining Satisfactory Methods of Treatment in Rare Diseases When Evaluating Significant Benefit-The EU Regulator's Perspective

    Get PDF
    Since the implementation of the EU Orphan Regulation in 2000, the Committee for Orphan Medicinal Products at the European Medicines Agency has been evaluating the benefits of proposed orphan medicines vs. satisfactory treatment methods. This type of evaluation is foreseen in the Orphan Regulation as the orphan designation criterion called the "significant benefit." In this article, based on 20 years of experience, we provide a commentary explaining what is considered a satisfactory method of treatment in the context of the EU Orphan Regulation and for the purpose of the assessment of significant benefit. We discuss the challenges posed by continuously changing clinical practise, which is associated with the increasing number of treatment options, evolving nature of medicinal therapeutic indications and our understanding of them

    Presynaptic c-Jun N-terminal Kinase 2 regulates NMDA receptor-dependent glutamate release

    Get PDF
    Activation of c-Jun N-terminal kinase (JNK) signaling pathway is a critical step for neuronal death occurring in several neurological conditions. JNKs can be activated via receptor tyrosine kinases, cytokine receptors, G-protein coupled receptors and ligand-gated ion channels, including the NMDA glutamate receptors. While JNK has been generally associated with postsynaptic NMDA receptors, its presynaptic role remains largely unexplored. Here, by means of biochemical, morphological and functional approaches, we demonstrate that JNK and its scaffold protein JIP1 are also expressed at the presynaptic level and that the NMDA-evoked glutamate release is controlled by presynaptic JNK-JIP1 interaction. Moreover, using knockout mice for single JNK isoforms, we proved that JNK2 is the essential isoform in mediating this presynaptic event. Overall the present findings unveil a novel JNK2 localization and function, which is likely to play a role in different physiological and pathological conditions

    Smoking remains associated with education after controlling for social background and genetic factors in a study of 18 twin cohorts

    Get PDF
    We tested the causality between education and smoking using the natural experiment of discordant twin pairs allowing to optimally control for background genetic and childhood social factors. Data from 18 cohorts including 10,527 monozygotic (MZ) and same-sex dizygotic (DZ) twin pairs discordant for education and smoking were analyzed by linear fixed effects regression models. Within twin pairs, education levels were lower among the currently smoking than among the never smoking co-twins and this education difference was larger within DZ than MZ pairs. Similarly, education levels were higher among former smoking than among currently smoking co-twins, and this difference was larger within DZ pairs. Our results support the hypothesis of a causal effect of education on both current smoking status and smoking cessation. However, the even greater intra-pair differences within DZ pairs, who share only 50% of their segregating genes, provide evidence that shared genetic factors also contribute to these associations.Peer reviewe

    Genetic and environmental influences on human height from infancy through adulthood at different levels of parental education

    Get PDF
    Genetic factors explain a major proportion of human height variation, but differences in mean stature have also been found between socio-economic categories suggesting a possible effect of environment. By utilizing a classical twin design which allows decomposing the variation of height into genetic and environmental components, we tested the hypothesis that environmental variation in height is greater in offspring of lower educated parents. Twin data from 29 cohorts including 65,978 complete twin pairs with information on height at ages 1 to 69 years and on parental education were pooled allowing the analyses at different ages and in three geographic-cultural regions (Europe, North America and Australia, and East Asia). Parental education mostly showed a positive association with offspring height, with significant associations in mid-childhood and from adolescence onwards. In variance decomposition modeling, the genetic and environmental variance components of height did not show a consistent relation to parental education. A random-effects meta-regression analysis of the aggregate-level data showed a trend towards greater shared environmental variation of height in low parental education families. In conclusion, in our very large dataset from twin cohorts around the globe, these results provide only weak evidence for the study hypothesis.Peer reviewe

    Genetic and environmental variation in educational attainment : an individual-based analysis of 28 twin cohorts

    Get PDF
    We investigated the heritability of educational attainment and how it differed between birth cohorts and cultural-geographic regions. A classical twin design was applied to pooled data from 28 cohorts representing 16 countries and including 193,518 twins with information on educational attainment at 25 years of age or older. Genetic factors explained the major part of individual differences in educational attainment (heritability: a(2)=0.43; 0.41-0.44), but also environmental variation shared by co-twins was substantial (c(2)=0.31; 0.30-0.33). The proportions of educational variation explained by genetic and shared environmental factors did not differ between Europe, North America and Australia, and East Asia. When restricted to twins 30 years or older to confirm finalized education, the heritability was higher in the older cohorts born in 1900-1949 (a(2)=0.44; 0.41-0.46) than in the later cohorts born in 1950-1989 (a(2)=0.38; 0.36-0.40), with a corresponding lower influence of common environmental factors (c(2)=0.31; 0.29-0.33 and c(2)=0.34; 0.32-0.36, respectively). In conclusion, both genetic and environmental factors shared by co-twins have an important influence on individual differences in educational attainment. The effect of genetic factors on educational attainment has decreased from the cohorts born before to those born after the 1950s.Peer reviewe

    Parental Education and Genetics of BMI from Infancy to Old Age : A Pooled Analysis of 29 Twin Cohorts

    Get PDF
    Objective The objective of this study was to analyze how parental education modifies the genetic and environmental variances of BMI from infancy to old age in three geographic-cultural regions. Methods A pooled sample of 29 cohorts including 143,499 twin individuals with information on parental education and BMI from age 1 to 79 years (299,201 BMI measures) was analyzed by genetic twin modeling. Results Until 4 years of age, parental education was not consistently associated with BMI. Thereafter, higher parental education level was associated with lower BMI in males and females. Total and additive genetic variances of BMI were smaller in the offspring of highly educated parents than in those whose parents had low education levels. Especially in North American and Australian children, environmental factors shared by co-twins also contributed to the higher BMI variation in the low education level category. In Europe and East Asia, the associations of parental education with mean BMI and BMI variance were weaker than in North America and Australia. Conclusions Lower parental education level is associated with higher mean BMI and larger genetic variance of BMI after early childhood, especially in the obesogenic macro-environment. The interplay among genetic predisposition, childhood social environment, and macro-social context is important for socioeconomic differences in BMI.Peer reviewe

    Comparative analysis and supragenome modeling of twelve Moraxella catarrhalis clinical isolates

    Get PDF
    Contains fulltext : 97744.pdf (publisher's version ) (Open Access)BACKGROUND: M. catarrhalis is a gram-negative, gamma-proteobacterium and an opportunistic human pathogen associated with otitis media (OM) and exacerbations of chronic obstructive pulmonary disease (COPD). With direct and indirect costs for treating these conditions annually exceeding $33 billion in the United States alone, and nearly ubiquitous resistance to beta-lactam antibiotics among M. catarrhalis clinical isolates, a greater understanding of this pathogen's genome and its variability among isolates is needed. RESULTS: The genomic sequences of ten geographically and phenotypically diverse clinical isolates of M. catarrhalis were determined and analyzed together with two publicly available genomes. These twelve genomes were subjected to detailed comparative and predictive analyses aimed at characterizing the supragenome and understanding the metabolic and pathogenic potential of this species. A total of 2383 gene clusters were identified, of which 1755 are core with the remaining 628 clusters unevenly distributed among the twelve isolates. These findings are consistent with the distributed genome hypothesis (DGH), which posits that the species genome possesses a far greater number of genes than any single isolate. Multiple and pair-wise whole genome alignments highlight limited chromosomal re-arrangement. CONCLUSIONS: M. catarrhalis gene content and chromosomal organization data, although supportive of the DGH, show modest overall genic diversity. These findings are in stark contrast with the reported heterogeneity of the species as a whole, as wells as to other bacterial pathogens mediating OM and COPD, providing important insight into M. catarrhalis pathogenesis that will aid in the development of novel therapeutic regimens
    corecore