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We studied group-I metabotropic glutamate (mGlu) receptors in Pahenu2 (ENU2) mice,

which mimic the genetics and neurobiology of human phenylketonuria (PKU), a metabolic

disorder characterized, if untreated, by autism, and intellectual disability (ID). Male ENU2

mice showed increased mGlu5 receptor protein levels in the hippocampus and corpus

striatum (but not in the prefrontal cortex) whereas the transcript of the mGlu5 receptor

was unchanged. No changes in mGlu1 receptor mRNA and protein levels were found

in any of the three brain regions of ENU2 mice. We extended the analysis to Homer

proteins, which act as scaffolds by linking mGlu1 and mGlu5 receptors to effector

proteins. Expression of the long isoforms of Homer was significantly reduced in the

hippocampus of ENU2 mice, whereas levels of the short Homer isoform (Homer 1a) were

unchanged. mGlu5 receptors were less associated to immunoprecipitated Homer in the

hippocampus of ENU2mice. The lack of mGlu5 receptor-mediated long-term depression

(LTD) in wild-type mice (of BTBR strain) precluded the analysis of hippocampal synaptic

plasticity in ENU2mice.We therefore performed a behavioral analysis to examine whether

pharmacological blockade of mGlu5 receptors could correct behavioral abnormalities

in ENU2 mice. Using the same apparatus we sequentially assessed locomotor activity,

object exploration, and spatial object recognition (spatial novelty test) after displacing

some of the objects from their original position in the arena. Systemic treatment with the

mGlu5 receptor antagonist, MPEP (20 mg/kg, i.p.), had a striking effect in the spatial

novelty test by substantially increasing the time spent in exploring the displaced objects

in ENU2 mice (but not in wild-type mice). These suggest a role for mGlu5 receptors in the

pathophysiology of ID in PKU and suggest that, also in adult untreated animals, cognitive

dysfunction may be improved by targeting these receptors with an appropriate therapy.
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INTRODUCTION

Phenylketonuria (PKU), one of the most common inherited
inborn errors of metabolism, is caused by the deficiency of the
enzyme phenylalanine hydroxylase (PAH), which catalyzes the

conversion of the phenylalanine (Phe) into tyrosine. Clinical
manifestations of PKU are largely due to the accumulation of
Phe in the CNS. If untreated, children affected by PKU show
intellectual disability (ID) associated with autism, seizures, and
motor deficits (Blau et al., 2010). The introduction of newborn
screening programs and early treatment with a low-Phe diet
has considerably improved the CNS manifestations of PKU.
However, the clinical outcome of PKU is suboptimal, and early-
treated patients still exhibit lower intelligence quotient (IQ)
and additional neuropsychiatric problems (Smith et al., 1990;
DeRoche and Welsh, 2008; Burton et al., 2013; Nardecchia et al.,
2015; Manti et al., 2016). This stimulates the search for new drug
targets for the treatment of CNS manifestations associated with
PKU.

Although PKU has been studied for decades, the
pathophysiology of ID remains unclear. Increased Phe
concentrations disrupt neurotransmitter metabolism, white

matter integrity, and synapse functioning in PKU patients and in
experimental animal models of PKU (Dyer et al., 1996; Puglisi-
Allegra et al., 2000; Martynyuk et al., 2005). BTBR-Pahenu2 mice
(ENU2 mice), derived from chemically induced mutation of
the PAH gene in male BTBR mice, closely mimic the genetics,
biochemistry, and neurobiology of PKU in humans (Shedlovsky
et al., 1993; McDonald and Charlton, 1997). These mice show
defects in simple discrimination learning, short-term memory,
reference memory, habit learning, and spatial and visual memory
(Sarkissian et al., 2000; Cabib et al., 2003; Pascucci et al., 2013),
associated with a reduced density of dendritic spines, shortened
length of the presynaptic active zone, widened synaptic cleft,
decreased thickness of postsynaptic density, reduced percentage
of mature spines, and decreased levels of proteins associated with
synaptic functioning and alterations in excitatory/inhibitory
ratio in cortical circuitry (Hörster et al., 2006; Andolina et al.,

2011; Liang et al., 2011; Horling et al., 2015; De Jaco et al., 2017).
The neurochemical abnormalities underlying these behavioral
and morphological changes are only partially elucidated. ENU2
mice show large reductions in brain serotonin levels, which result
from Phe-induced inhibition of tryptophan hydroxylase, and
a lesser reduction in catecholamine level (Puglisi-Allegra et al.,
2000; Pascucci et al., 2009; Andolina et al., 2011). Abnormalities
of glutamatergic neurotransmission have been found to be
associated with PKU. Accordingly, Phe, at concentrations
similar to those found in PKU, was reported to inhibit NMDA
receptors function, and to depress the amplitude and frequency
of excitatory postsynaptic currents in cultured hippocampal
neurons (Glushakov et al., 2002, 2003). In addition, increases
in the density of MK-801 recognition site on the NMDA gated
ion channel, and changes in the expression of NMDA and
AMPA receptor subunits (increases in GluN2A, GluA1, and
GluA2/3 and reductions of GluN2B) were reported in the
forebrain of PKU mice (Glushakov et al., 2005; Martynyuk et al.,
2005).

To our knowledge, no studies have been performed on
metabotropic glutamate (mGlu) receptors in PKU models,
although these receptors are involved in mechanisms of activity-
dependent synaptic plasticity underlying learning and memory
processes (Nicoletti et al., 2011). In particular, abnormalities
in group-I mGlu receptors (mGlu1 and mGlu5 receptors)
have been linked to cognitive dysfunction in models of
disorders characterized by autism and ID, such as Fragile-
X, Rett’s syndrome, Angelmann’s syndrome, tuberous sclerosis,
and chromosome 16p11.2 microdeletion (Huber et al., 2002;
Auerbach et al., 2011; Michalon et al., 2012; D’Antoni et al.,
2014; Pignatelli et al., 2014; Tian et al., 2015). Group-I mGlu
receptors interact with Homer proteins, which physically link
the C-terminal domain of mGlu1α and mGlu5 receptors to
scaffolding and effector proteins and ion channels in the
postsynaptic densities, such as the inositol-1,4,5-trisphosphate
receptor and TrpC channels (Brakeman et al., 1997; Tu et al.,
1998). Two types of Homer proteins have been identified:
(i) long Homer isoforms, which include Homer 1b,−1c,−2,
and −3 and may interact to each other by means of the
coiled-coil domain in their C-terminal portion; and (ii) the
shorter Homer 1a isoform, which is unable to interact with
other Homer proteins and is induced by synaptic hyperactivity
(Brakeman et al., 1997; Xiao et al., 1998, 2000; Fagni et al., 2000).
Abnormalities in the interaction between mGlu5 receptors and
Homer have been described in animal models of monogenic
autism (Ronesi et al., 2012; D’Antoni et al., 2014; Pignatelli
et al., 2014; Guo et al., 2015, 2016), suggesting that Homer
expression and function lies at the core of postsynaptic
mechanisms underlying learning and memory processes and
cognitive functions. We now report that expression of mGlu5
receptors and long Homer isoforms is altered in the brain
of ENU2 mice, and that pharmacological blockade of mGlu5
receptors is able to reverse behavioral abnormalities in these
mice.

MATERIALS AND METHODS

Animals
Eighty days old homozygous (−/−) PahEnu2 (ENU2) and (+/+)
PahEnu2 (WT) male mice of BTBR background strain were used
for all experiments and were obtained by heterozygous mating.
In a separate set of experiments, we used 3 male ENU2, 4 female
ENU2 and 7 female heterozygous (+/–; HTZ) mice for the study
of a possible gender effect (age: 40–60 days).

Genetic characterization was performed on DNA prepared
from tail tissue using the Easy DNA kit (Invitrogen, Carlsbad,
CA, USA). The ethylnitrosourea (enu2) mutation was detected
after PCR amplification of exon 7 of the Pah gene and digestion
thought restriction enzyme BsmAI (NewEnglandBiolabs, Inc.,
USA) as previously described (Pascucci et al., 2008). Mice were
weaned at postnatal day (PND) 21, experimental subjects (sex
matched) from different litters were housed 2–4 per cage with
food and water ad libitum on a 12:12 h dark: light cycle (light on
07.00 a.m.–07.00 p.m. h).

All efforts were made to minimize the number of animals used
and to alleviate their discomfort. All experimental procedures

Frontiers in Neuroscience | www.frontiersin.org 2 March 2018 | Volume 12 | Article 154

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Nardecchia et al. Hippocampal mGlu5 Receptors and Phenylketonuria

were performed in strict compliance with the Italian (D.L.
26/2014) and European Union Directive (2010/63/EU) on the
protection of animals used for scientific purposes. All animal
experiments were approved by the Italian Ministry of Health
(Rome, Italy).

Brain tissue was collected from ENU2 and WT mice.

Drug and Treatment
2-methyl-6-(phenylethynyl)-pyridine hydrochloride (MPEP,
Tocris Bioscience) was dissolved in saline and injected i.p. at the
dose of 20 mg/kg, 30min before the behavioral testing session.
This dose of MPEP was found to be behaviorally effective in
BTBR mice (Silverman et al., 2010).

Immunoblotting
Mice were decapitated and the prefrontal cortex, hippocampus,
and corpus striatum were removed. The medial portion of
the frontal lobe (anterior to the head of the caudate nucleus)
containing the anterior cingulate cortex, prelimbic cortex,
and infralimbic cortex was carefully dissected by hand and
considered as “prefrontal cortex.” Tissues were stored at
−80◦C. Tissues were homogenized and proteins extracted
as previously described (Orlando et al., 2014). Proteins (15–
25µg) were resuspended in SDS-bromophenol blue reducing
buffer containing 5% 2-mercaptoethanol and separated by
electrophoresis on 8% (or 10% for Homer) SDS polyacrylamide
gels. Samples were never boiled (for mGlu receptors), or were
incubated at 65◦C for 5min (for Homer), before loading.
The proteins were transferred onto nitrocellulose membranes
(350mA, 1 h, 4◦C) and thereafter, membranes were blocked
for unspecific binding with 5% non-fat dry milk in TBST
(TBS containing 0.1% Tween 20) for 1 h at RT. Membranes
were incubated with the following primary antibodies: mouse
anti-mGlu1α (DB Bioscience, 556389), 1:1,000, overnight at
4◦C; rabbit anti-mGluR5 (Millipore, cat AB5675), 1:5,000,
1 h at RT; mouse anti-β-actin (Sigma-Aldrich, Milan, Italy,
cat. A5316), 1:10,000, 1 h at RT; mouse anti-Homer (Santa
Cruz, sc-17842), 1:1,000, 1 h at RT; goat anti-Homer 1a
(Santa Cruz, sc-8922), 1:2,000, 1.5 h at RT. Immunoreactive
bands were visualized by enhanced chemiluminescence
(GE Healthcare, Milan, Italy) using horseradish peroxidase-
conjugated secondary antibodies (Cell Signaling Technology,
Danvers, MA).

Co-immunoprecipitation
Hippocampi were homogenized at 4◦C in co-
immunoprecipitation buffer (50mM Tris, pH 7.4, 120mM
NaCl, 0.5% Igepal, 1mM EDTA, 1mM EGTA), and 1mg of
total proteins were tumbled overnight at 4◦C with 5 µg of
anti pan-Homer antibodies (Santa Cruz Biotechnology, D-3).
Protein A/G agarose bead slurry (Thermo Fisher Scientific)
was added for two additional hours, and the beads were
then washed with co-immunoprecipitation buffer. Western
blotting was performed with anti-mGlu5 and anti pan-Homer
antibodies.

RNA Isolation and RT-PCR
Total RNA was extracted from tissues (cortex, hippocampus,
and corpus striatum) with TRI reagent (Sigma Aldrich, Milan,
Italy) according to manufacturer’s instructions, and quantified
by spectrophotometric analysis. RNA samples were digested
with DNAse (Promega, Madison, WI) and single strand cDNA
was synthesized from 1 µg of total RNA using Superscript
II (Promega, Madison, WI) and random hexamers. Real-time
PCR was performed on 20 ng of cDNA by using specific
primers and SYBR Green Master Mix (Bioline, London, UK)
on an iCycler Biorad instrument (Hercules, CA). Thermal
cycler conditions were as follows: 10min at 95◦C (polymerase
activation) followed by 40 cycles of denaturation at 95◦C
for 15 s, annealing at 58◦C for 15 s, extension at 72◦C
for 15 s.

Sequences of primers used were as follows: Homer 1a
(NM_011982): for 5′-TCTTCAGTC TCCTTTGACACCA-3′

and rev 5′-CATGATTGCTGAATTGAATGTG-3′; pan-Homer
1 (NM_001284189): for 5′-TGGACTGGGATTCTCCTCT
G-3′ and rev 5′-TGTGTCACATCGGGTGTTCT-3′; mGlu5
receptor (NM_001081414): for 5′-ACGAAGACCAACCGTAT
TGC-3′ and rev 5′-AGACTTCTCGGATGCTTGGA-3′; mGlu1
receptor (NM_016976): for 5′-CATACGGAAAGGGGAAGT
GA-3′ and rev 5′-AAAAGGCGATGGCTATGATG-3′; b-actin
(NM_007393): For 5′-GTTGACATCCGTAAAGACC-3′ and
rev 5′-TGGAAGGTGGACAGTGAG-3′.

mRNA quantities were calculated from serially diluted
standard curves simultaneously amplified with the samples and
normalized vs. β-actin mRNA levels.

Electrophysiology
Brains were rapidly dissected out and slices from hippocampus
(250–400µm) were cut in ice-cold artificial cerebrospinal fluid
(ACSF) composed of (in mM): NaCl 124, KCl 3.0, MgCl2 1.0,
CaCl2 2.0, NaH2PO4 1.25, NaHCO3 26, glucose 10, saturated
with 95% O2, 5% CO2, pH 7.4. The CA3 region was not
removed from the slices. Slices were allowed to recover for 2–
4 h and then placed on a nylon mesh, completely submerged
in a small chamber (0.8ml), and superfused with oxygenated
ACSF (30–31◦C) at a constant flow rate of 2.5–3.0 ml/min.
The slope of the field EPSPs (fEPSPs) was recorded from
the apical dendrite layer of the CA1 pyramidal cells by
means of saline-filled glass electrodes of ∼2–4 M� resistance.
Stimulating monopolar electrodes were placed in Schaffer
collateral/commissural afferents, and stimulation amplitude was
adjusted so as to produce one-half of the maximal response.
Signals were filtered at 3 kHz and digitized at 10 kHz. After
the stabilization of the fEPSP, LTD was induced by low-
frequency stimulation (1Hz for 15min) or following (S)-
3,5-dihydroxyphenylglycine [(S)-DHPG] application (50µM,
10min).

Behavioral Analyses
Spatial Novelty Test
The apparatus was a circular open field (60 cm in diameter and
20 cm in height). The apparatus floor was gray, divided into
sectors using black lines, and covered by a transparent plastic
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lining. It was surrounded by a gray plastic wall rendering the
visual environment homogeneous, except for a black and white
striped pattern (30 × 20 cm) that was attached to the wall of
the field as local cue. Mice were individually submitted to five
successive videotaped sessions, each 6-min long, with 3-min
interval. At the end of the last session mice were placed back
in their home-cages. Session 1 (S1) was used to habituate the
animal to the apparatus. Distance moved and velocity were
assessed as locomotor activity in an open-field condition. In
the sessions 2, 3, and 4 (S2, S3, and S4), each mouse was
introduced in the same sector of the open field where four
different objects (called A, B, C, and D) were placed in the
same position. During these sessions mice could learn the spatial
configuration of the objects included in the apparatus. Object
exploration was expressed by the time (s) spent in contact
with the objects (contact: the snout of the animal touching an
object).

In last test session (S5) two of the four objects were
moved from the original position (object A was moved in
the position previously taken by object B and the latter was
placed in a new location) to test the animal’s reaction to
a spatial change (discrimination of spatial novelty). In this
session, the exploration of two categories of objects, displaced
object (DO) and non-displaced object (NDO), were collected.
These measures were expressed as the mean time in contact
with the objects belonging to the two categories in each
test session minus the mean time spent in contact with
the same object category in the previous session (S5–S4).
Apparatus and objects were cleaned between each mouse tested
(Cabib et al., 2003).

Statistical Analysis
Data were analyzed using Student’s t-test, two-way or three-way
analysis of variance (ANOVA). Fisher’s protected least-significant
difference (PLSD) test was used for comparing group means
only when a significant F-value was determined by ANOVA.
Values are expressed as the mean ± SEM. Significance was set
at p < 0.05.

RESULTS

Up-Regulation of mGlu5 Receptors in the
Hippocampus and Corpus Striatum of
ENU2 Mice
We examined whether the PKU phenotype was associated with
changes in the expression of mGlu1α and mGlu5 receptors
in brain regions that play key roles in cognitive function
and motor programming (hippocampus, corpus striatum, and
prefrontal cortex). Western blot analysis of mGlu1α receptors
showed a band at about 130–135 KDa corresponding to receptor
monomers. No changes in mGlu1α receptor protein levels were
found in any brain region of ENU2 mice as compared to their
WT counterparts (Figure 1).

Immunoblots with mGlu5 receptor antibodies showed a
130 kDa band corresponding to receptor monomers, and
a second band at the expected molecular size (250 kDa)

of receptor dimers (Figures 2A–C). Densitometric analysis
was performed as the sums of the dimer and monomer
densitometry values. Interestingly, mGlu5 receptor protein levels
were markedly enhanced in the hippocampus and striatum
of ENU2 mice, with no changes in the prefrontal cortex
(Figures 2A–C). In contrast, mGlu5 receptor mRNA levels
were unchanged in the three brain regions of ENU2 mice
(Figure 2D).

To examine whether changes in the expression of mGlu5
receptors were gender-dependent, we performed a different
set of experiments comparing female ENU2 mice with
female heterozygous mice, and then male ENU2 mice
with female ENU2 mice (no WT mice were available
for these experiments). The analysis was restricted to the
hippocampus. Expression of mGlu5 receptors did not differ
between female ENU2 and heterozygous mice (Figure 3A). In
addition, mGlu5 receptors had a significantly higher density
in male ENU2 mice as compared to female ENU2 mice
(Figure 3B).

Down-Regulation of the Long Isoforms of
Homer Protein in the Hippocampus and
Corpus Striatum of ENU2 Mice
For Western blot analysis, we used a monoclonal antibody that
detects all long Homer isoforms (Homer 1b,−1c,−2a–c, and
−3). Immunoblots showed two major bands at about 45 kDa,
and an additional faint band, which was exclusively visible in
the hippocampus (Figures 4A–C). Long Homer isoform protein
levels were significantly reduced in the hippocampus and corpus
striatum of ENU2 mice as compared to their WT counterparts.
The transcript of Homer 1 was also significantly reduced in the
hippocampus of ENU2 mice, whereas a trend to a reduction
was seen in the striatum and prefrontal cortex (Figures 4D).
mGlu5 receptor protein levels were significantly reduced in
pan-Homer immunoprecipitates from the hippocampus of
ENU2 mice as compared to the hippocampus of WT mice
(Figure 4E).

We also examined the expression of the inducible, short
isoform of Homer (Homer 1a). Western blot analysis showed a
single band at the expected molecular size (30 kDa). As opposed
to the long isoforms of Homer, no changes in Homer 1a mRNA
and protein levels were found in the hippocampus of ENU2 mice
(Figures 4F,G).

Analysis of mGlu5 Receptor-Dependent
Synaptic Plasticity in ENU2 and WT Mice
To examine whether changes in mGlu5 receptors and Homer
proteins seen in the hippocampus of ENU2 mice could have an
impact on mechanisms of activity-dependent synaptic plasticity,
we measured responses to DHPG at the Schaffer collateral-
CA1 synapses. In both ENU2 and WT mice DHPG (50µM)
induced a short-term depression (STD) of excitatory synaptic
transmission, which returned back to normal 10min after the
termination of DHPG exposure. DHPG-induced STD did not
differ between ENU2 and WT mice (Figure 5). We were unable
to induce LTD in hippocampal slices of both genotypes, in
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FIGURE 1 | No changes in mGlu1α receptor protein levels in the hippocampus (A), corpus striatum (B), and prefrontal cortex (C) of ENU2 mice. All samples from the

hippocampus and prefrontal cortex of ENU2 and WT mice are shown in the immunoblots in (A,C), respectively. A representative immunoblot of striatal samples is

shown in (B). Values are means ± S.E.M. of 3 WT and 6 ENU2 mice in (A); 10 WT and 14 ENU2 mice in (B); and 4 WT and 8 ENU2 mice in (C).

line with the finding that mechanisms of synaptic plasticity
are abnormal in the hippocampus of BTBR mice (MacPherson
et al., 2008; Stephenson et al., 2011; Seese et al., 2014). This
precluded any comparative study between ENU2 and WT mice
on long-term forms of mGlu5 receptor-dependent synaptic
plasticity.

Pharmacological Blockade of mGlu5
Receptors Improved Behavioral
Abnormalities in ENU2 Mice
The same apparatus was used for measurements of locomotor
activity (during the exploration phase) and for the analysis of
how animals encode spatial relationships (spatial novelty test)
(Figure 6A). In the exploratory phase (S1 in Figure 6A), ENU2
mice showed a large reduction in distance traveled and speed of
movements as compared to WT mice. WT and ENU2 mice were
treated i.p. with either vehicle or 20 mg/kg MPEP 30min prior to
the beginning of the behavioral sessions. All behavioral sessions

(from S1 to S5) lasted for 42min; thus, the time elapsed from
the injection of MPEP (or vehicle) and the end of the behavioral
sessions was 72min. In vivo studies have shown that MPEP has
a 75% receptor occupancy at 30min and approximately 50%
at 60min following i.p. injection in C57Bl/6 mice. Receptor
occupancy was higher in SD rats (Anderson et al., 2003). No
studies on mGlu5 receptor occupancy were ever performed in
BTBR mice. We used a 30-min pre-incubation time with MPEP
on the basis of a previous report examining behavioral responses
to MPEP in BTBR mice (Silverman et al., 2010). Acute systemic
treatment with MPEP (20 mg/kg, i.p.) 30min prior to the test
session significantly enhanced locomotor activity in WT mice,
whereas only a trend to an increase was observed in ENU2 mice
(Figure 6B). In the first of the three sequential phases of object
exploration (S2), ENU2mice spent less time in object exploration
as compared toWTmice. Treatment withMPEP had no effect on
both ENU2 and WT mice in the S2 phase, corresponding to the
acquisition phase of memory (Figure 6C). In the two subsequent
phases (S3 and S4), corresponding to the consolidation phases
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FIGURE 2 | Increased mGlu5 receptor levels in the hippocampus and corpus striatum of ENU2 mice. Representative immunoblots of samples from the hippocampus,

corpus striatum, and prefrontal cortex are shown in (A–C), respectively. Densitometric values are means ± S.E.M. of 8 WT and 12 ENU2 mice in (A); 10 WT and 14

ENU2 mice in (B); and 9 WT and 17 ENU2 mice in (C). *p < 0.05 vs. the respective WT-values [Student’s t-test; t(18) = 4.51 in (A); t(22) = 3.06 in (B); t(24) = 1.49 in

(C)]. mGlu5 mRNA levels in the hippocampus, corpus striatum, and prefrontal cortex are shown in (D), were values are means ± S.E.M. of 5 WT and 4 ENU2 mice for

the hippocampus; 5 WT and 5 ENU2 mice for the corpus striatum; and 4 WT and 6 ENU2 mice for the prefrontal cortex.

of memory, WT mice treated with saline or MPEP, spent
progressively less time in object exploration, as expected. A
similar trend was observed with ENU2 mice treated with saline,
but not with ENU2 mice treated with MPEP (Figure 6C). In
the last phase of the test (S5) WT mice treated with saline or
MPEP spent much more time than in S4 in exploring the two
objects (objects labeled as “A” and “B” in Figure 6A) that had
been displaced from their initial location (“displaced objects”
or “DO” in Figure 6D). ENU2 mice spent less time than in S4
in exploring displaced objects. Interestingly, MPEP treatment
dramatically enhanced the exploration time of displaced objects
in ENU2mice (Figure 6D). MPEP treatment had no effect on the
exploration of non-displaced objects in bothWT and ENU2mice
(Figure 6D).

DISCUSSION

Group-I mGlu receptors have been the focus of extensive

investigation in animal models of ID and autism sinceMark Bear,
Kimberly Huber, and their Associates have shown that mGlu5
receptor-dependent LTD is amplified in the hippocampus of
Fmr1 knockout mice modeling Fragile-X syndrome. Changes in

mGlu5 receptor signaling have been reported in animal models
of autism spectrum disorders, such as Fragile-X, Rett’s syndrome,
Angelmann’s syndrome, tuberous sclerosis, and chromosome
16p11.2microdeletion (see Introduction and References therein).

The evidence that mGlu5 receptor protein levels were largely
increased in the hippocampus and striatum of male ENU2 mice
modeling PKU strengthens the relationship between mGlu5
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FIGURE 3 | The increase in mGlu5 receptor protein levels found in ENU2 mice is gender-dependent. Immunoblot analysis of mGlu5 receptors in the hippocampus of

female ENU2 (n = 4) and heterozygous (HTZ, n = 7) mice is shown in (A). Comparison between male (n = 3) and female (n = 4) ENU2 mice is shown in (B).

Densitometric values are means ± S.E.M. In (B), *p < 0.05 vs. male ENU2-values [Student’s t-test; t(5) = 4.75].

receptors and the pathological phenotype of genetic disorders
associated with ID. This increase likely reflects an enhanced
stability or a reduced turnover rate of the mGlu5 receptor protein
because no changes were found in the transcript of mGlu5
receptors in any of the selected brain region. An enhanced
expression of mGlu5 receptors has also been found in Fmr1
knockout mice, as well as in brain tissues from children affected
by autism spectrum disorder. For example, an increased density
of 3H-MPEP binding sites has been reported in the striatum of
Fmr1 knockout mice (Maccarrone et al., 2010), and an increase
in mGlu5 receptor expression has been found in the prefrontal
cortex of patients affected by Fragile-X syndrome (Lohith et al.,
2013), in the brain of children with autism (Fatemi et al., 2011),
and in brain specimens of patients affected by tuberous sclerosis
(Boer et al., 2008).

mGlu5 receptors interact with Homer proteins, which
critically regulate receptor expression, activity, and interaction
with signaling proteins. Homer proteins bind to the C-terminus
domain of mGlu5 receptors via their N-terminus EVH1
domain. Long isoforms of Homer, i.e., Homer 1b,−1c,−2,
and −3, interact to each other through their C-terminal
coiled-coil domains, and scaffolds mGlu5 receptors to effector
proteins, such as the inositol-1,4,5-trisphosphate receptors, the
ryanodine receptor, Shank, C-type transient receptor potentials,
the phosphatidylinositol-3-kinase enhancer, and diacylglycerol
lipase-alpha (DGLα). Homer 1a, a short Homer isoform lacking
the coiled-coil domain, competes with long Homers in the
binding to mGlu5 receptors and disrupts receptor interaction
with effector proteins (Tu et al., 1998, 1999; Kammermeier et al.,
2000; Feng et al., 2002; Gray et al., 2003; Rong et al., 2003; Yuan
et al., 2003; Kim et al., 2006; Jung et al., 2007; Shiraishi-Yamaguchi
and Furuichi, 2007; Worley et al., 2007). Conditions that tip the

balance between long Homer isoforms and Homer 1a in favor of
Homer 1a enhance the ligand-independent, constitutive activity
of mGlu5 receptors (Ango et al., 2001).

We found a reduced expression of the long isoforms of
Homer in the hippocampus and striatum of male ENU2 mice,
whereas expression of Homer 1a was unchanged, at least in the
hippocampus. mGlu5 receptor protein levels were reduced in
pan-Homer immunoprecipitates from ENU2 mice, suggesting
that mGlu5 receptors are less associated with the long isoforms
of Homer protein, and, therefore might display a greater
constitutive activity. A reduced association of mGlu5 receptors
with long Homer isoforms has been reported in mouse models
of monogenic autism, such as Fmr1 and Shank3 knockout mice
(Giuffrida et al., 2005; Ronesi et al., 2012;Wang et al., 2016). Mice
harboring a Grm5 mutation that disrupts receptor interaction
with Homer mimic several phenotypes of Fmr1 knockout mice
(Guo et al., 2016), and genetic deletion of Homer 1a, which
results into an enhanced mGlu5 interaction with long Homer
isoforms, corrects molecular and behavioral phenotype of Fmr1
knockout mice (Ronesi et al., 2012). An opposite scenario
was observed in Ube3A hemizygous mice modeling Angelman
syndrome (another disorder characterized by autism and ID),
in which Homer 1a levels are reduced in the hippocampus,
resulting into an enhanced coupling of mGlu5 receptors with
long Homer isoforms (Pignatelli et al., 2014). Thus, our findings
obtained in ENU2 mice are in line with the involvement
of the mGlu5/Homer axis in the pathophysiology of autism
and ID.

Pharmacological blockade of mGlu5 receptors with selective
NAMs, such as MPEP and CTEP, has been shown to correct
several pathological phenotypes in mouse models of monogenic
autism, such as Fmr1 knockout mice (Michalon et al., 2012;
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FIGURE 4 | Reduced expression of the long Homer isoforms and reduced

coupling of mGlu5 receptors to Homer in ENU2 mice. Representative

immunoblots of long Homer isoforms in the hippocampus, corpus striatum,

and prefrontal cortex of WT and ENU2 mice are shown in (A), (B), and (C).

Densitometric values are means ± S.E.M. of 6 WT and 9 ENU2 mice in (A); 10

WT and 14 ENU2 mice in (B); and 9 WT and 17 ENU2 mice in (C). *p < 0.05

vs. the respective WT-values [Student’s t-test; t(13) = 5.27 in (A); t(22) = 3.06

in (B); t(24) = 1.87 in (C)]. Pan-Homer 1 mRNA levels in the three brain regions

of WT and ENU2 mice are shown in (D). Values are means ± S.E.M. of 5 WT

and 5 ENU2 mice for the hippocampus; 5 WT and 4 ENU2 mice for the corpus

striatum; and 4 WT and 4 ENU2 mice for the prefrontal cortex. *p < 0.05 vs.

the respective WT-values [Student’s t-test; t(8) = 2.95 for the hippocampus;

t(7) = 1.47 for the corpus striatum; and t(6) = 1.80, for the prefrontal cortex].

mGlu5 receptor protein levels in pan-Homer immunoprecipitates from the

hippocampus of WT and ENU2 mice are shown in (E). Densitometric values

are means ± S.E.M. of 3 WT and 3 ENU2 mice. *p < 0.05 vs. WT mice

[Student’s t-test; t(4) = 7.74]. A representative immunoblot of the short Homer

(Continued)

FIGURE 4 | 1a isoform in the hippocampus of WT and ENU2 mice is shown in

(F). Densitometric values are means ± S.E.M. of 8 WT and 9 ENU2 mice.

mRNA levels of Homer 1a in the hippocampus of WT and ENU2 mice are

shown in (G). Values are means ± S.E.M. of 5 WT and 6 ENU2 mice.

FIGURE 5 | DHPG-induced changes in excitatory synaptic responses in the

Schaeffer collateral/CA1 synapses of WT and ENU2 mice. No LTD could be

induced in hippocampal slices prepared from the two genotypes. Values are

means ± S.E.M. of data obtained from slices of 5–6 animals per group.

Gandhi et al., 2014), BTBR T+tf/J mice (Silverman et al., 2010;
Seese et al., 2014; Yang et al., 2015), mice exposed prenatally to
valproic acid (Mehta et al., 2011), mutant mice modeling human
chromosome 16p11.2 microdeletion (Tian et al., 2015), and
MecP2 knockout mice modeling Rett syndrome (Tao et al., 2016).
Tsc2−/− mice mimicking tuberous sclerosis are an exception
because in these animals it is the activation of mGlu5 receptors
that corrects the pathological phenotype (Auerbach et al., 2011).

The increased mGlu5 receptor protein levels combined
with a reduced expression of long Homer isoforms in the
hippocampus and striatum of ENU2 mice led us to hypothesize
that an overactivity of mGlu5 receptors might contribute to the
pathophysiology of cognitive dysfunction associated with PKU.
We could not test whether mGlu5 receptor-dependent synaptic
plasticity was abnormal in ENU2 mice because the mouse strain
(BTBR) precluded the study of mGlu5-dependent LTD. We
therefore examined whether behavioral abnormalities of ENU2
mice could be corrected by mGlu5 receptor blockade using
MPEP. Systemic administration of MPEP in rodents is known to
produce anxiolytic (Spooren et al., 2000; Tatarczynska et al., 2001;
Pilc et al., 2002; Nordquist et al., 2007) and anti-Parkinsonian
effects in rodents (Breysse et al., 2002; Coccurello et al., 2004;
Levandis et al., 2008; De Leonibus et al., 2009) at doses that do
not cause sedation. We tested the effect of MPEP on ambulation,
object exploration, and spatial novelty discrimination in the same
behavioral session. Untreated ENU2 mice showed a substantial
reduction in locomotor activity, which may result from the
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FIGURE 6 | Pharmacological blockade of mGlu5 receptors improves cognitive performances in the spatial novelty test in ENU2 mice. The same open field arena

(A) was used for the sequential assessment of locomotor activity (S1), object exploration (S2–S4), and spatial novelty (S5) in WT and ENU2 mice treated i.p. with either

saline or MPEP (20 mg/kg). For the whole behavioral analysis we used 12 WT mice treated with saline, 7 WT mice treated with MPEP, 5 ENU2 mice treated with

saline, and 5 ENU2 mice treated with MPEP. Values are always expressed as means ± S.E.M. Locomotor activity is expressed as distance moved and speed in (B,C),

respectively, where *p < 0.05 vs. the respective values obtained in WT mice treated with saline (Two-way ANOVA + Fisher’s LSD); genotype x treatment:

(B) [F (1, 24) = 6.15; p = 0.02; (C) F (1, 25) = 4.95; p = 0.03]. Statistical analysis in (D) was performed by Three-way ANOVA + Fisher’s LSD. Test × treatment:

[F (1, 32) = 4.37; p = 0.04]. Post-hoc: p < 0.05 vs. the respective NDO-values (*) or vs. all other DO-values (#). DO, Displaced Objects; NDO, Non Displaced Objects.

reduced catecholamine and serotonin synthesis (Puglisi-Allegra
et al., 2000), but can also be explained with the increased
expression of mGlu5 receptors in the striatum. Activation of
mGlu5 receptors on striatal projection neurons of the indirect
pathway of the basal ganglia motor circuit restrains the action
of dopamine at D2 receptors, thereby reducing motor activity
(reviewed by Conn et al., 2005). Treatment with MPEP increased
locomotor activity in ENU2 mice, but this effect was not
specific because it was also observed in wild-type mice, as
expected (Silverman et al., 2010). Where treatment with MPEP
produced striking and genotype-specific effects was on the
spatial novelty test, in which ENU2 mice showed a marked
behavioral impairment reflected by the strong reduction in the
time spent in exploring objects that had been displaced from
their original position. MPEP treatment largely improved the
performance of ENU2 mice in the spatial novelty test, without
affecting behavior in wild-type mice. The spatial novelty test
is a non-associative test that was designed to evaluate the
ability of rodents to encode spatial relationships (Poucet, 1989;
Roullet et al., 1997; Cabib et al., 2003). The hippocampus plays

a crucial role in spatial information processing and novelty
detection (Lisman and Otmakhova, 2001; Vinogradova, 2001;
Lee et al., 2005; Hunsaker et al., 2008). Animal studies have
shown that the hippocampus encodes information relative to
the spatial aspects of object recognition, whereas the perirhinal
cortex is involved in the processing of non-spatial aspects of
object recognition (Brown and Aggleton, 2001; Aggleton and
Brown, 2005). Thus, the spatial novelty test examines a form of
hippocampus-dependent learning (Goh and Manahan-Vaughan,
2013), and the “therapeutic” effect of MPEP suggests that an
overexpression/activity of mGlu5 receptors in the hippocampus
contributes to the pathophysiology of cognitive dysfunction in
ENU2 mice.

In conclusion, our findings provide a further example of a
genetic disorder characterized by ID in which abnormalities
of mGlu5 receptors can be detected, and suggest that
pharmacological blockade of mGlu5 receptors might represent
a novel strategy for the treatment of cognitive dysfunction in
male PKU patients in whom the clinical outcome is suboptimal
in spite of an early treatment with a Phe-deficient diet.
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