63 research outputs found

    Of Mice and Materials: Payoffs of UNSGC Research Infrastructure Awards

    Get PDF
    A versatile test facility has been designed and built to study space environments effects on small satellites and system components. Testing for potentially environmental-induced modifications of small satellites is critical to avoid possible deleterious or catastrophic effects over the duration of space mission. This is increasingly more important as small satellite programs have longer mission lifetimes, expand to more harsh environments (such as polar or geosynchronous orbits), make more diverse and sensitive measurements, minimize shielding to reduce mass, and utilize more compact and sensitive electronics (often including untested off-the-shelf components). The vacuum chamber described here is particularly well suited for cost-effective, long-duration tests of modifications due to exposure to simulated space environment conditions for CubeSats, system components, and small scale materials samples of \u3e10 cm X 10 cm. The facility simulates critical environmental components including the neutral gas atmosphere, the FUV/UVMS/NIR solar spectrum, electron plasma fluxes, and temperature. The solar spectrum (-120 nm to 2500 nm) is simulated using an Solar Simulator and Kr resonance lamps at up to four Suns intensity. Low and intermediate electron flood guns and a Sr90 β radiation source provide uniform, stable, electron flux (~ 20 eV to 2.5 MeV) over the CubeSat surface at \u3e5X intensities of the geosynchronous spectrum. Stable temperatures from 100 K to 450 K are possible. An automated data acquisition system periodically monitors and records the environmental conditions, sample photographs, UVMS/NIR reflectivity, IR absorptivity/emissivity, and surface voltage over the CubeSat face and in situ calibration standards during the sample exposure cycle

    Identification of a New Class of Lipid Droplet-Associated Proteins in Plants

    Get PDF
    Article on the identification of a new class of lipid droplet-associated proteins in plants

    Independent test assessment using the extreme value distribution theory

    Full text link
    Abstract The new generation of whole genome sequencing platforms offers great possibilities and challenges for dissecting the genetic basis of complex traits. With a very high number of sequence variants, a naïve multiple hypothesis threshold correction hinders the identification of reliable associations by the overreduction of statistical power. In this report, we examine 2 alternative approaches to improve the statistical power of a whole genome association study to detect reliable genetic associations. The approaches were tested using the Genetic Analysis Workshop 19 (GAW19) whole genome sequencing data. The first tested method estimates the real number of effective independent tests actually being performed in whole genome association project by the use of an extreme value distribution and a set of phenotype simulations. Given the familiar nature of the GAW19 data and the finite number of pedigree founders in the sample, the number of correlations between genotypes is greater than in a set of unrelated samples. Using our procedure, we estimate that the effective number represents only 15 % of the total number of independent tests performed. However, even using this corrected significance threshold, no genome-wide significant association could be detected for systolic and diastolic blood pressure traits. The second approach implements a biological relevance-driven hypothesis tested by exploiting prior computational predictions on the effect of nonsynonymous genetic variants detected in a whole genome sequencing association study. This guided testing approach was able to identify 2 promising single-nucleotide polymorphisms (SNPs), 1 for each trait, targeting biologically relevant genes that could help shed light on the genesis of the human hypertension. The first gene, PFH14, associated with systolic blood pressure, interacts directly with genes involved in calcium-channel formation and the second gene, MAP4, encodes a microtubule-associated protein and had already been detected by previous genome-wide association study experiments conducted in an Asian population. Our results highlight the necessity of the development of alternative approached to improve the efficiency on the detection of reasonable candidate associations in whole genome sequencing studies.http://deepblue.lib.umich.edu/bitstream/2027.42/134747/1/12919_2016_Article_38.pd

    The private life of malaria parasites:Strategies for sexual reproduction

    Get PDF
    Malaria parasites exhibit a complex lifecycle, requiring extensive asexual replication in the liver and blood of the vertebrate host, and in the haemocoel of the insect vector. Yet, they must also undergo a single round of sexual reproduction, which occurs in the vector’s midgut upon uptake of a blood meal. Sexual reproduction is obligate for infection of the vector and thus, is essential for onwards transmission to new hosts. Sex in malaria parasites involves several bottlenecks in parasite number, making the stages involved attractive targets for blocking disease transmission. Malaria parasites have evolved a suite of adaptations (“strategies”) to maximise the success of sexual reproduction and transmission, which could undermine transmission-blocking interventions. Yet, understanding parasite strategies may also reveal novel opportunities for such interventions. Here, we outline how evolutionary and ecological theories, developed to explain reproductive strategies in multicellular taxa, can be applied to explain two reproductive strategies (conversion rate and sex ratio) expressed by malaria parasites within the vertebrate host

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF

    Small Satellite Space Environments Effects Test Facility

    Get PDF
    A versatile test facility has been designed and built to study space environments effects on small satellites and system components. Testing for potentially environmental-induced modifications of small satellites is critical to avoid possible deleterious or catastrophic effects over the duration of space mission. This is increasingly more important as small satellite programs have longer mission lifetimes, expand to more harsh environments (such as polar or geosynchronous orbits), make more diverse and sensitive measurements, minimize shielding to reduce mass, and utilize more compact and sensitive electronics (often including untested off-the-shelf components). The vacuum chamber described here is particularly well suited for cost-effective, long-duration tests of modifications due to exposure to simulated space environment conditions for CubeSats, system components, and small scale materials samples of \u3e10 cm X 10 cm. The facility simulates critical environmental components including the neutral gas atmosphere, the FUV/UV/VIS/NIR solar spectrum, electron plasma fluxes, and temperature. The solar spectrum (~120 nm to 2500 nm) is simulated using an Solar Simulator and Kr resonance lamps at up to four Suns intensity. Low and intermediate electron flood guns and a Sr90 β radiation source provide uniform, stable, electron flux (~20 eV to 2.5 MeV) over the CubeSat surface at \u3e5X intensities of the geosynchronous spectrum. Stable temperatures from 100 K to 450 K are possible. An automated data acquisition system periodically monitors and records the environmental conditions, sample photographs, UV/VIS/NIR reflectivity, IR absorptivity/emissivity, and surface voltage over the CubeSat face and in situ calibration standards during the sample exposure cycle
    corecore