235 research outputs found

    Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models

    Get PDF
    Measurements of atmospheric O2/N2 ratios and CO2 concentrations can be combined into a tracer known as atmospheric potential oxygen (APO ≈ O2/N2 + CO2) that is conservative with respect to terrestrial biological activity. Consequently, APO reflects primarily ocean biogeochemistry and atmospheric circulation. Building on the work of Stephens et al. (1998), we present a set of APO observations for the years 1996-2003 with unprecedented spatial coverage. Combining data from the Princeton and Scripps air sampling programs, the data set includes new observations collected from ships in the low-latitude Pacific. The data show a smaller interhemispheric APO gradient than was observed in past studies, and different structure within the hemispheres. These differences appear to be due primarily to real changes in the APO field over time. The data also show a significant maximum in APO near the equator. Following the approach of Gruber et al. (2001), we compare these observations with predictions of APO generated from ocean O2 and CO2 flux fields and forward models of atmospheric transport. Our model predictions differ from those of earlier modeling studies, reflecting primarily the choice of atmospheric transport model (TM3 in this study). The model predictions show generally good agreement with the observations, matching the size of the interhemispheric gradient, the approximate amplitude and extent of the equatorial maximum, and the amplitude and phasing of the seasonal APO cycle at most stations. Room for improvement remains. The agreement in the interhemispheric gradient appears to be coincidental; over the last decade, the true APO gradient has evolved to a value that is consistent with our time-independent model. In addition, the equatorial maximum is somewhat more pronounced in the data than the model. This may be due to overly vigorous model transport, or insufficient spatial resolution in the air-sea fluxes used in our modeling effort. Finally, the seasonal cycles predicted by the model of atmospheric transport show evidence of an excessive seasonal rectifier in the Aleutian Islands and smaller problems elsewhere. Copyright 2006 by the American Geophysical Union

    An improved comparison of atmospheric Ar/N2 time series and paired ocean-atmosphere model predictions

    Get PDF
    Ar/N2 variations in the atmosphere reflect ocean heat fluxes, air-sea gas exchange, and atmospheric dynamics. Here atmospheric Ar/N2 time series are compared to paired ocean-atmosphere model predictions. Agreement between Ar/N2 observations and simulations has improved in comparison to a previous study because of longer time series and the introduction of automated samplers at several of the atmospheric stations, as well as the refinement of the paired ocean-atmosphere models by inclusion of Ar and N2 as active tracers in the ocean component. Although analytical uncertainties and collection artifacts are likely to be mainly responsible for observed Ar/N2 outliers, air parcel back-trajectory analysis suggests that some of the variability in Ar/N2 measurements could be due to the low-altitude history of the air mass collected and, by extension, the local oceanic Ar/N2 signal. Although the simulated climatological seasonal cycle can currently be evaluated with Ar/N2 observations, longer time series and additional improvements in the signal-to-noise ratio will be required to test other model predictions such as interannual variability, latitudinal gradients, and the secular increase in atmospheric Ar/N2 expected to result from ocean warming. Copyright 2008 by the American Geophysical Union

    Glass Solder Approach for Robust, Low-Loss, Fiber-to-Waveguide Coupling

    Get PDF
    The key advantages of this approach include the fact that the index of interface glass (such as Pb glass n = 1.66) greatly reduces Fresnel losses at the fiber-to-waveguide interface, resulting in lower optical losses. A contiguous structure cannot be misaligned and readily lends itself for use on aircraft or space operation. The epoxy-free, fiber-to-waveguide interface provides an optically pure, sealed interface for low-loss, highpower coupling. Proof of concept of this approach has included successful attachment of the low-melting-temperature glass to the x-y plane of the crystal, successful attachment of the low-meltingtemperature glass to the end face of a standard SMF (single-mode fiber), and successful attachment of a wetted lowmelting- temperature glass SMF to the end face of a KTP crystal. There are many photonic components on the market whose performance and robustness could benefit from this coupling approach once fully developed. It can be used in a variety of fibercoupled waveguide-based components, such as frequency conversion modules, and amplitude and phase modulators. A robust, epoxy-free, contiguous optical interface lends itself to components that require low-loss, high-optical-power handling capability, and good performance in adverse environments such as flight or space operation

    A provenance task abstraction framework

    Get PDF
    Visual analytics tools integrate provenance recording to externalize analytic processes or user insights. Provenance can be captured on varying levels of detail, and in turn activities can be characterized from different granularities. However, current approaches do not support inferring activities that can only be characterized across multiple levels of provenance. We propose a task abstraction framework that consists of a three stage approach, composed of (1) initializing a provenance task hierarchy, (2) parsing the provenance hierarchy by using an abstraction mapping mechanism, and (3) leveraging the task hierarchy in an analytical tool. Furthermore, we identify implications to accommodate iterative refinement, context, variability, and uncertainty during all stages of the framework. A use case describes exemplifies our abstraction framework, demonstrating how context can influence the provenance hierarchy to support analysis. The paper concludes with an agenda, raising and discussing challenges that need to be considered for successfully implementing such a framework

    A novel approach to task abstraction to make better sense of provenance data

    Get PDF
    Working Group Report in 'Provenance and Logging for Sense Making' report from Dagstuhl Seminar 18462: Provenance and Logging for Sense Making, Dagstuhl Reports, Volume 8, Issue 1

    Measurements and models of the atmospheric Ar/N2 ratio

    Get PDF
    The Ar/N2 ratio of air measured at 6 globally distributed sites shows annual cycles with amplitudes of 12 to 37 parts in 106. Summertime maxima reflect the atmospheric Ar enrichment driven by seasonal warming and degassing of the oceans. Paired models of air-sea heat fluxes and atmospheric tracer transport predict seasonal cycles in the Ar/N2 ratio that agree with observations, within uncertainties

    Structure and Magnetism of the Rh4+-containing perovskite oxides La0.5Sr0.5Mn0.5Rh0.5O3 and La0.5Sr0.5Fe0.5Rh0.5O3

    Get PDF
    Synchrotron X-ray powder diffraction data indicate that La0.5Sr0.5Mn0.5Rh0.5O3 and La0.5Sr0.5Fe0.5Rh0.5O3 adopt distorted perovskite structures (space group Pnma) with A-site and B-site cation disorder. A combination of XPS and 57Fe Mössbauer data indicate the transition metal cations in the two phases adopt Mn3+/Rh4+ and Fe3+/Rh4+ oxidation state combinations respectively. Transport data indicate both phases are insulating, with ρ vs. T dependences consistent with 3D variable-range hopping. Magnetisation data reveal that La0.5Sr0.5Mn0.5Rh0.5O3 adopts a ferromagnetic state below Tc ∼ 60 K, which is rationalized on the basis of coupling via a dynamic Jahn–Teller distortion mechanism. In contrast, magnetic data reveal La0.5Sr0.5Fe0.5Rh0.5O3 undergoes a transition to a spin-glass state at T ∼ 45 K, attributed to frustration between nearest-neighbour Fe–Rh and next-nearest-neighbour Fe–Fe couplings

    Atmospheric O2/N2 changes, 1993-2002: Implications for the partitioning of fossil fuel CO2 sequestration

    Get PDF
    Improvements made to an established mass spectrometric method for measuring changes in atmospheric O2/N2 are described. With the improvements in sample handling and analysis, sample throughput and analytical precision have both increased. Aliquots from duplicate flasks are repeatedly measured over a period of 2 weeks, with an overall standard error in each flask of 3-4 per meg, corresponding to 0.6-0.8 ppm O2 in air. Records of changes in O2/N2 from six global sampling stations (Barrow, American Samoa, Cape Grim, Amsterdam Island, Macquarie Island, and Syowa Station) are presented. Combined with measurements Of CO2 from the same sample flasks, land and ocean carbon uptake were calculated from the three sampling stations with the longest records (Barrow, Samoa, and Cape Grim). From 1994-2002, We find the average CO2 uptake by the ocean and the land biosphere was 1.7 ± 0.5 and 1.0 ± 0.6 GtC yr -1 respectively; these numbers include a correction of 0.3 Gt C yr-l due to secular outgassing of ocean O2. Interannual variability calculated from these data shows a strong land carbon source associated with the 1997-1998 El Niño event, supporting many previous studies indicating that high atmospheric growth rates observed during most El Niño events reflect diminished land uptake. Calculations of interannual variability in land and ocean uptake are probably confounded by non-zero annual air sea fluxes of O2. The origin of these fluxes is not yet understood. Copyright 2005 by the American Geophysical Union
    corecore