26 research outputs found
Determinación del potencial de biorremediación de efluentes acuosos alquitranados usando microalgas nativas del departamento del Atlántico
La gasificación se presenta como una alternativa promisoria para cubrir la demanda de combustibles alternativos en regiones apartadas donde se tiene alta disponibilidad de biomasa. Sin embargo se producen diferentes sustancias intermedias, comúnmente llamados alquitranes, indeseables para los fines del gas de síntesis y altamente tóxicas para el ambiente y los seres vivos. Así, se plantea como alternativa la biorremedación de dichos residuos a partir de microalgas. En esta investigación se establecieron varios enfoques para abordar el problema. En primer lugar, se construyeron las metodologías necesarias para la recolección, identificación, cultivo, preservación, almacenamiento, aislamiento y adaptación de microalgas. Estas microalgas pertenecen a cuatro cuerpos de agua del departamento del Atlántico: ciénaga de Mallorquin, laguna de Luruaco, Lago del Cisne y un brazo del rio Magdalena en inmediaciones del municipio de Sabanagrande. En segundo lugar, la producción de los alquitranes depende de muchos factores, como temperatura de gasificación, tipo de gasificador, composición de la biomasa, entre otras. Por lo tanto los efluentes alquitranados provenientes de los postratamientos del producto de la gasificación de cuatro biomasas diferentes fueron analizados y caracterizados por grupos generales de alquitranes. Las biomasas bajo estudio, propias de la región caribe, fueron: zea mays (maíz), Coco nutifera (coco), Sesamun indicumn (ajonjolí), y Oryza sativa (arroz). Por último, para evaluar el potencial de biorremedación de los efluentes del proceso de remoción de alquitranes indeseables en la corriente de producto de gasificación de dichas biomasas se realizaron diferentes pruebas de supervivencia que orientaron la ruta de trabajo a seguir.MaestríaMagister en Ingeniería Mecánic
Selección de estrategia y sintonización óptima de control industrial usando un diseño de experimento factorial
In this study, a novel experimental approach for the optimal selection of an actuator-based control strategy is presented. The proposed approach is a two-stage method: first, a two-level factorial experiment design with n factors (2n) was applied to compare different control schemes. Schemes comparison was carried out in terms of energy consumption and closed-loop performance. For the best relative scheme, a Central Composite Face-centered (CCF) design was completed obtaining the controller parameters that optimize the performance in terms of the Integral Absolute Error (IAE) while operating in a region of low energy consumption. The proposed approach was experimentally tested using real data obtained from a laboratory prototype plant. Some experimental tests illustrating the suitability of our method are shown at the end of this article.en este estudio se presenta un nuevo enfoque experimental para la selección óptima de una estrategia de control basada en el actuador. El enfoque propuesto es un método de dos etapas: primero se aplica un diseño de experimento factorial de dos niveles con n factores (2n) para comparar diferentes esquemas de control. La comparación de esquemas se lleva a cabo en términos de consumo de energía y rendimiento de circuito cerrado. Para el mejor esquema relativo, se completa un Diseño Central Compuesto Centrado en las Caras (CCF, por sus siglas en inglés) obteniendo parámetros de controlador que optimizan el rendimiento, en términos del Error absoluto integral (IAE, por sus siglas en inglés), mientras operan en una región de bajo consumo de energía. El enfoque propuesto se probó experimentalmente utilizando datos reales obtenidos de una planta prototipo de laboratorio. Algunas pruebas experimentales que ilustran la idoneidad de nuestro método se muestran al final de este artículo
Geography and ecology shape the phylogenetic composition of Amazonian tree communities
Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.
Location: Amazonia.
Taxon: Angiosperms (Magnoliids; Monocots; Eudicots).
Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.
Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.
Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
Geography and ecology shape the phylogenetic composition of Amazonian tree communities
AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
Mapping density, diversity and species-richness of the Amazon tree flora
Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
Mapping density, diversity and species-richness of the Amazon tree flora
Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
Geography and ecology shape the phylogenetic composition of Amazonian tree communities
Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.
Location: Amazonia.
Taxon: Angiosperms (Magnoliids; Monocots; Eudicots).
Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega‐phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.
Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white‐sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.
Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long‐standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
Mapping density, diversity and species-richness of the Amazon tree flora
Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
Panorama de oportunidad de la transición energética con sistemas híbridos integrados e hidrogeno verde como alternativa para avanzar en la sostenibilidad energética en Colombia
<p>El incremento en el consumo de energía, sigue siendo un indicador determinante del desarrollo de la sociedad y los mercados a nivel mundial. La generación y uso de la energía son algunos de los mayores retos tecnológicos actuales debido a que más del 50 % proviene de fuentes no renovables derivadas del petróleo y su impacto en el ambiente no permite su sostenibilidad a lo largo del tiempo. Por esta razón, se han implementado diferentes estrategias, planes y políticas a nivel mundial para incentivar la diversificación de las fuentes, los vectores energéticos, el aumento la eficiencia energética, y avance hacia estrategias de uso eficiente de la energía, lo que permitiría un desarrollo sostenible en el ámbito energético. Con este estudio se determinó el panorama de oportunidades alineado con la sostenibilidad y la transición energética en Colombia para sistemas híbridos de generación eléctrica, utilizando el hidrógeno como vector energético para el almacenamiento y transporte de energía, además de permitir la integración de fuentes de generación disponibles y las propuestas. Como resultado del análisis, se concluye que tenemos una gran oportunidad para aprovechar la diversidad de nuestra matriz energética, las políticas estatales y el momento de cambio que estamos experimentando como especie</p>
Recommended from our members
Geography and ecology shape the phylogenetic composition of Amazonian tree communities
Publication status: PublishedFunder: Conselho Nacional de Desenvolvimento Científico e Tecnológico; doi: http://dx.doi.org/10.13039/501100003593Funder: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; doi: http://dx.doi.org/10.13039/501100002322Funder: Fundação de Amparo à Pesquisa do Estado de São Paulo; doi: http://dx.doi.org/10.13039/501100001807Funder: HORIZON EUROPE Marie Sklodowska‐Curie ActionsAbstractAimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega‐phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white‐sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long‐standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.</jats:sec