47 research outputs found

    Precise targeted integration by a chimaeric transposase zinc-finger fusion protein

    Get PDF
    Transposons of the Tc1/mariner family have been used to integrate foreign DNA stably into the genome of a large variety of different cell types and organisms. Integration is at TA dinucleotides located essentially at random throughout the genome, potentially leading to insertional mutagenesis, inappropriate activation of nearby genes, or poor expression of the transgene. Here, we show that fusion of the zinc-finger DNA-binding domain of Zif268 to the C-terminus of ISY100 transposase leads to highly specific integration into TA dinucleotides positioned 6-17 bp to one side of a Zif268 binding site. We show that the specificity of targeting can be changed using Zif268 variants that bind to sequences from the HIV-1 promoter, and demonstrate a bacterial genetic screen that can be used to select for increased levels of targeted transposition. A TA dinucleotide flanked by two Zif268 binding sites was efficiently targeted by our transposase-Zif268 fusion, suggesting the possibility of designer β€˜Z-transposases’ that could deliver transgenic cargoes to chosen genomic locations

    Brown Spider (Loxosceles genus) Venom Toxins: Tools for Biological Purposes

    Get PDF
    Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus) venom is enriched in low molecular mass proteins (5–40 kDa). Although their venom is produced in minute volumes (a few microliters), and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins

    Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications

    Get PDF
    Cyclodextrin glucanotransferases (CGTases) are industrially important enzymes that produce cyclic Ξ±-(1,4)-linked oligosaccharides (cyclodextrins) from starch. Cyclodextrin glucanotransferases are also applied as catalysts in the synthesis of glycosylated molecules and can act as antistaling agents in the baking industry. To improve the performance of CGTases in these various applications, protein engineers are screening for CGTase variants with higher product yields, improved CD size specificity, etc. In this review, we focus on the strategies employed in obtaining CGTases with new or enhanced enzymatic capabilities by searching for new enzymes and improving existing enzymatic activities via protein engineering

    The 43 residue DNA binding domain of gamma delta resolvase binds adjacent major and minor grooves of DNA.

    Get PDF
    The carboxyl-terminal domain of gamma delta resolvase binds to each half of the three resolvase binding sites that constitute the recombination site, res. Ethylation inhibition experiments show that the phosphate contacts made by the C-terminal DNA binding domain are similar to those made by intact resolvase, with the exception of a single phosphate at the inside end of each contact region which is contacted solely by the intact resolvase. The DNA binding domain makes essentially identical contacts to all 6 half sites, whereas the intact resolvase makes slightly different contacts to each binding site. Despite its small size, only 43 amino acid residues, the resolvase C-terminal domain interacts with an unusually large segment of DNA. Phosphate contacts extend across an adjacent major and minor groove of DNA and about one third of the circumference around the helix. The minimal binding segment, determined experimentally, is a 12 bp sequence that includes the 9 base pair inverted repeat (common to all half sites), the adjacent 3 base pairs (towards the center of the intact resolvase binding site), and phosphates at both ends

    Cooperativity mutants of the Ξ³Ξ΄ resolvase identify an essential interdimer interaction

    No full text
    Ξ³Ξ΄ resolvase, a transposon-encoded site-specific recombinase, catalyzes the resolution of the cointegrate intermediate of Ξ³Ξ΄ transposition. The recombination reaction involves the formation of a catalytic nucleoprotein complex whose structure is determined by specific protein-DNA and protein-protein interactions. We have isolated many resolvase mutants and have identified four that are unable to mediate a subclass of higher order protein-protein interactions necessary for recombination. This mutant phenotype is characterized by an inability to catalyze recombination, a loss of cooperative binding to res DNA, and a failure to induce looping out of the DNA between two resolvase binding sites within res. The amino acid side chains identified by the cooperativity mutants cluster on a surface of the protein that mediates an interaction between resolvase dimers in a crystallographic tetramer. We have therefore identified a region of resolvase that mediates an interdimer protein-protein interaction necessary for the formation of the recombinogenic synaptic intermediate. Β© 1990
    corecore