1,670 research outputs found

    Investigation of Staphylococcus aureus Bacteriophage Population at a South Carolina University: The Disappearance of S. aureus Bacteriophage Population Amidst the COVID-19 Pandemic

    Get PDF
    Bacteriophages are naturally occurring, nonpathogenic viruses, which infect bacterial cells. Recently, bacteriophage research has increased with hopes of using them against antibiotic resistant bacterial infections in the future. This study aimed to determine a possible correlation between perceived stress and the Staphylococcus aureus bacteriophage population at Coastal Carolina University (CCU), Conway, South Carolina, using isolation and characterization techniques to further understand humans as a potential bacteriophage source. From October 2020 to March 2021, nasal and postauricular swab samples were collected from 12 participants on a monthly basis along with a perceived stress survey. Samples were subjected to filtration, amplification, plaque assays, and PCR techniques to identify and characterize bacteriophage. The purpose of this study was to understand humans as a repository for bacteriophage and to understand factors, namely perceived stress, which affect bacteriophage presence on humans. Results suggested that possible changes due to the COVID-19 pandemic, such as increased stress levels, mask wearing, and constant hand washing/ sanitizing, caused a drastic decrease in the Escherichia coli and Staphylococcus aureus phage population at Coastal Carolina University

    Comprehensive Analysis of Copy Number Variation of Genes at Chromosome 1 and 10 Loci Associated with Late Age Related Macular Degeneration

    Get PDF
    Copy Number Variants (CNVs) are now recognized as playing a significant role in complex disease etiology. Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in the western world. While a number of genes and environmental factors have been associated with both risk and protection in AMD, the role of CNVs has remained largely unexplored. We analyzed the two major AMD risk-associated regions on chromosome 1q32 and 10q26 for CNVs using Multiplex Ligation-dependant Probe Amplification. The analysis targeted nine genes in these two key regions, including the Complement Factor H (CFH) gene, the 5 CFH-related (CFHR) genes representing a known copy number “hotspot”, the F13B gene as well as the ARMS2 and HTRA1 genes in 387 cases of late AMD and 327 controls. No copy number variation was detected at the ARMS2 and HTRA1 genes in the chromosome 10 region, nor for the CFH and F13B genes at the chromosome 1 region. However, significant association was identified for the CFHR3-1 deletion in AMD cases (p = 2.38×10−12) OR = 0.31, CI-0.95 (0.23–0.44), for both neovascular disease (nAMD) (p = 8.3×10−9) OR = 0.36 CI-0.95 (0.25–0.52) and geographic atrophy (GA) (p = 1.5×10−6) OR = 0.36 CI-0.95 (0.25–0.52) compared to controls. In addition, a significant association with deletion of CFHR1-4 was identified only in patients who presented with bilateral GA (p = 0.02) (OR = 7.6 CI-0.95 1.38–41.8). This is the first report of a phenotype specific association of a CNV for a major subtype of AMD and potentially allows for pre-diagnostic identification of individuals most likely to proceed to this end stage of disease

    Characterization of an electron conduit between bacteria and the extracellular environment

    Get PDF
    A number of species of Gram-negative bacteria can use insoluble minerals of Fe(III) and Mn(IV) as extracellular respiratory electron acceptors. In some species of Shewanella, deca-heme electron transfer proteins lie at the extracellular face of the outer membrane (OM), where they can interact with insoluble substrates. To reduce extracellular substrates, these redox proteins must be charged by the inner membrane/periplasmic electron transfer system. Here, we present a spectro-potentiometric characterization of a trans-OM icosa-heme complex, MtrCAB, and demonstrate its capacity to move electrons across a lipid bilayer after incorporation into proteoliposomes. We also show that a stable MtrAB subcomplex can assemble in the absence of MtrC; an MtrBC subcomplex is not assembled in the absence of MtrA; and MtrA is only associated to the membrane in cells when MtrB is present. We propose a model for the modular organization of the MtrCAB complex in which MtrC is an extracellular element that mediates electron transfer to extracellular substrates and MtrB is a trans-OM spanning ß-barrel protein that serves as a sheath, within which MtrA and MtrC exchange electrons. We have identified the MtrAB module in a range of bacterial phyla, suggesting that it is widely used in electron exchange with the extracellular environment

    Salt restriction lowers blood pressure at rest and during exercise without altering peripheral hemodynamics in hypertensive individuals

    Get PDF
    Dietary salt restriction is a well-established approach to lower blood pressure and reduce cardiovascular disease risk in hypertensive individuals. However, little is currently known regarding the effects of salt restriction on central and peripheral hemodynamic responses to exercise in those with hypertension. Therefore, this study sought to determine the impact of salt restriction on the central and peripheral hemodynamic responses to static-intermittent handgrip (HG) and dynamic single-leg knee extension (KE) exercise in individuals with hypertension. Twenty-two subjects (14 men and 8 women, 51 ± 10 yr, 173 ± 11 cm, 99 ± 23 kg) forewent their antihypertensive medication use for at least 2 wk before embarking on a 5-day liberal salt (LS: 200 mmol/day) diet followed by a 5-day restricted salt (RS: 10 mmol/day) diet. Subjects were studied at rest and during static intermittent HG exercise at 15, 30, and 45% of maximal voluntary contraction and KE exercise at 40, 60, and 80% of maximum KE work rate. Salt restriction lowered resting systolic blood pressure (supine: −12 ± 12 mmHg, seated: −17 ± 12 mmHg) and diastolic blood pressure (supine: −3 ± 9 mmHg, seated: −5 ± 7 mmHg, P \u3c 0.05). Despite an ~8 mmHg lower mean arterial blood pressure during both HG and KE exercise following salt restriction, neither central nor peripheral hemodynamics were altered. Therefore, salt restriction can lower blood pressure during exercise in subjects with hypertension, reducing the risk of cardiovascular events, without impacting central and peripheral hemodynamics during either arm or leg exercise

    Photorespiration: metabolic pathways and their role in stress protection

    Get PDF
    Photorespiration results from the oxygenase reaction catalysed by ribulose-1,5-bisphosphate carboxylase/ oxygenase. In this reaction glycollate-2-phosphate is produced and subsequently metabolized in the photorespiratory pathway to form the Calvin cycle intermediate glycerate-3-phosphate. During this metabolic process, CO2 and NH3 are produced and ATP and reducing equivalents are consumed, thus making photorespiration a wasteful process. However, precisely because of this ine¤ciency, photorespiration could serve as an energy sink preventing the overreduction of the photosynthetic electron transport chain and photoinhibition, especially under stress conditions that lead to reduced rates of photosynthetic CO2 assimilation. Furthermore, photorespiration provides metabolites for other metabolic processes, e.g. glycine for the synthesis of glutathione, which is also involved in stress protection. In this review, we describe the use of photorespiratory mutants to study the control and regulation of photorespiratory pathways. In addition, we discuss the possible role of photorespiration under stress conditions, such as drought, high salt concentrations and high light intensities encountered by alpine plants

    Pharmacists in Pharmacovigilance: Can Increased Diagnostic Opportunity in Community Settings Translate to Better Vigilance?

    Get PDF
    The pharmacy profession has undergone substantial change over the last two to three decades. Whilst medicine supply still remains a central function, pharmacist’s roles and responsibilities have become more clinic and patient focused. In the community (primary care), pharmacists have become important providers of healthcare as Western healthcare policy advocates patient self-care. This has resulted in pharmacists taking on greater responsibility in managing minor illness and the delivery of public health interventions. These roles require pharmacists to more fully use their clinical skills, and often involve diagnosis and therapeutic management. Community pharmacists are now, more than ever before, in a position to identify, record and report medication safety incidents. However, current research suggests that diagnostic ability of community pharmacists is questionable and they infrequently report to local or national schemes. The aim of this paper is to highlight current practice and suggest ways in which community pharmacy can more fully contribute to patient safety

    Evaluating the Association Between Keratoconus and the Corneal Thickness Genes in an Independent Australian Population

    Get PDF
    PURPOSE. A recent genome-wide association study (GWAS) identified six loci associated with central corneal thickness that also conferred associated risk of keratoconus (KC). We aimed to assess whether genetic associations existed for these loci with KC or corneal curvature in an independent cohort of European ancestry. METHODS. In total, 157 patients with KC were recruited from public and private clinics in Melbourne, Australia, and 673 individuals without KC were identified through the Genes in Myopia study from Australia. The following six single-nucleotide polymorphisms (SNPs) that showed a statistically significant association with KC in a recent GWAS study were selected for genotyping in our cohort: rs4894535 (FNDC3B), rs1324183 (MPDZ-NF1B), rs1536482 (RXRA-COL5A1), rs7044529 (COL5A), rs2721051 (FOXO1), and rs9938149 (BANP-ZNF469). The SNPs were assessed for their association with KC or corneal curvature using logistic or linear regression methods, with age and sex included as covariates. Bonferroni corrections were applied to account for multiple testing. RESULTS. Genotyping data were available for five of the SNPs. Statistically significant associations with KC were found for the SNPs rs1324183 (P ¼ 0.001; odds ratio [OR], 1.68) and rs9938149 (P ¼ 0.010; OR, 1.47). Meta-analysis of previous studies yielded genomewide significant evidence of an association for rs1324183, firmly establishing it as a KC risk variant. None of the SNPs were significantly associated with corneal curvature. CONCLUSIONS. The SNPs rs1324183 in the MPDZ-NF1B gene and rs9938149 (between BANP and ZNF4659) were associated with KC in this independent cohort, but their association was via a non-corneal curvature route

    Beam test results for the FiberGLAST instrument

    Get PDF
    The FiberGLAST scintillating fiber telescope is a large-area instrument concept for NASA\u27s GLAST program. The detector is designed for high-energy gamma-ray astronomy, and uses plastic scintillating fibers to combine a photon pair tracking telescope and a calorimeter into a single instrument. A small prototype detector has been tested with high energy photons at the Thomas Jefferson National Accelerator Facility. We report on the result of this beam test, including scintillating fiber performance, photon track reconstruction, angular resolution, and detector efficiency

    Estimation of GRB detection by FiberGLAST

    Get PDF
    FiberGLAST is one of several instrument concepts being developed for possible inclusion as the primary Gamma-ray Large Area Space Telescope (GLAST) instrument. The predicted FiberGLAST effective area is more than 12,000 cm2 for energies between 30 MeV and 300 GeV, with a field of view that is essentially flat from 0°–80°. The detector will achieve a sensitivity more than 10 times that of EGRET. We present results of simulations that illustrate the sensitivity of FiberGLAST for the detection of gamma-ray bursts
    corecore