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ABSTRACT
The FiberGLAST scintillating fiber telescope is a large-area instrument concept for NASA's Gamma Ray Large Area
Space Telescope (GLAST) program. The detector is designed for high-energy (E �10 MeV) gamma—ray astronomy,
and uses plastic scintillating fibers to combine a photon pair tracking telescope and a calorimeter into a single
instrument. A small prototype detector has been tested with high energy photons at the Thomas Jefferson National
Accelerator Facility. We report on the results of this beam test, including scintillating fiber performance, photon
track reconstruction, angular resolution, and detector efficiency.

Keywords: gamma-rays, astronomy, instrumentation

1. INTRODUCTION
FiberGLAST is a scintillating fiber detector concept instrument under development for NASA's Gamma Ray Large
Area Space Telescope (GLAST) project. The detector combines a tracker section and a calorimeter section into
a single detector module that will probe the high energy gamma—ray sky at energies �10 MeV. The experiment
concept is based on modules consisting of a converter sheet and plastic scintillating fibers arranged in orthogonal
layers, and used to image the charged particles that emerge from the converter material. The fibers are read out
using multi—anode photomultiplier tubes (MAPMTs). The tracker consists of 90 modules spaced with a pitch of '2
cm each, and a thickness of r.O.O2 radiation lengths (rl). The tracker system contains a total of 1.8 rl of converter
material, and 0.4 rl of fibers, resulting in 85% of 1 GeV gamma—rays converting inside the tracker. The calorimeter
consists of 35 modules, each of 0.14 ri. Thus the tracker and calorimeter combined are more than 7 rl. The system
is enclosed by an anticoincidence shield system composed of crossed plastic scintillator slabs, and read out with
waveshifter strips coupled to photomultiplier tubes.

Because the flux level of gamma—ray sources is low, a requirement for confident source detection with high energy
detectors is a large effective area. Effective area is defined as the product of the photon detection efficiency with
the geometric area of the detector. Gamma—ray sources are also distributed throughout the sky, resulting in the
desire for telescopes tohave a wide field of view in order to observe a large number of sources. In some regions of
the sky, for example, the galactic center, source density and diffuse emission is high, resulting in the requirement of
good angular resolution in order to discern individual sources unambiguously. This requires an angular resolution
capability on the order of 0.1 — 1.0 degrees, and depends on the energy range of the observations. The FiberGLAST
instrument concept combines these capabilities by using the technology of plastic scintillating fibers as detector
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Figure 1. JLab 98 beatii test apparatus with top cover remove(l.

elements. 1,2 Charged particles produced in the electromagnetic cascade that occurs within the detector volume are
tracked throughout the active volume by the fiber planes, allowing for reconstruction of the track and derivation of
the incident photon's direction. In addition, the energy deposition in the calorimeter section of the detector provides
information on the incident photon's energy.

The data acquisition system contains a triggering system for forming coincidence events, and for rejecting charged
particle events. Simulation studies show that this instrument concept results in an on—axis effective area of 13000
cm2 above 25 MeV. The angular resolution is 0.33° at 1 GeV, and 2° at l0() MeV.

We have developed a small prototype instrument in order to investigate time performance of scintillating fibers,
and evaluate different readout devices. This prototype was tested at the Thomas Jefferson National Laboratory. 'Fime
majority of the fibers were read out using an image intensified CCI) camera mstead of the MAPM'l's that are used
in the final instrument design. In this paper, we refer to this prototype as the .1 Lab -98 heani test, apparatus. We
have scheduled a second beam test (LSU --99) to be held at the Center for Advanced Microstructmires and l)evices at
Louisiana State University in which the integrated fiber MA PM]' system will be teste(F This test is seiledule(l to
occur ill 1999 July.

In sections 2 amid 3 we discuss the hardware setup and facility used for time .ILab-98 h)eamn test. In section 4,
we present the results for the fiber planes that, were read out with the CCI) camera, amid iii section 5 we show the
results for time fiber planes read out with time MAPMT. In section 6 we discuss plans for time LSU—99 beam test, and
in section 7, we present a summary an(l conclusions.

2. BEAM TEST HARDWARE
The J Lab- -98 beani test apparatus, shown in Figure 1, consisted of twelve detector planes, each of which contained
arrays of scintillating blue-emitting nmulticlad plastic fibers. The fibers of each plane were arranged in two orthogonal
layers that are denoted as the x and y layers of the plane. The plastic fibers consist of a polystyrene core with 30 mmm
acrylic cladding that is coated with a polymer. Tile detector planes were mounted omi an ahimnimmuimi frame asseml)ly,
and the entire apparatus was enclosed within a light tight container.

The detector planes were configured differently in order to test several hardware configurations. 'I'ime forward
eight planes (left side of Figure 1) were read out by a Photek MCP-340S image intensifier coupled to a Thmoimipsomi
TH7866 244x550 pixel CCI) array, collectively denoted as the IICCI). Time aft four planes were read omit with a
ilamamnatsu 11.5900-064 64-anode photomultiplier tube (MAPMT). At the time of the beam test, it was not feasible
to incorporate the preferred MAPMT readout system for all twelve fiber planes; thus time 1ICCI) was used in order
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Figure 2. Schematic top view of the JLab-98 beam test apparatus showing the eight IICCD fiber planes, and the
four MAPMT planes.

to facilitate the testing of the scintillation performance of the fibers. In the upcoming beam test to be performed in
the summer of 1999, 20 fiber planes will be read out using a set of 20 MAPMTs. This configuration is designed as
a prototype of the main FiberGLAST concept instrument tracker section. We plan to test the tracker—calorimeter
combination at a later time.

A schematic of the beam test apparatus is shown in Figure 2. The beam is incident from the left. Of the eight
IICCD planes, the first four had round fibers (0.75 mm diameter) arranged in a doublet configuration. Adjacent
fibers were offset to allow close packing and improved tracker precision. The fibers were manufactured by Bicron
Corporation, and precisely positioned with 0.9 mm pitch between adjacent centers. The remaining four planes had
close-packed 1 mm2 fibers that were produced at Washington University in St. Louis.

Each of the eight IICCD planes had lOx 10 cm x-y fiber arrays mounted on an aluminum plate. The aluminum
plate contained a center cut-out, and a tantalum foil of thickness 1/54 radiation length was glued directly to the
fiber arrays. The spacing between each detector plane was 2.25 cm. The original design was to use the fibers over
the full 100 cm2 cut-out area, but at the time of the beam test, we were able to format a 2 x 2 cm region. One end
of the fibers in each array was formatted onto the face of the IICCD, and the other end was sealed with an opaque,
non-reflective coating.

The plastic scintillators Si (1 cm thick), and S4 (0.63 cm thick) were placed in the front and rear of the IICCD
planes as shown in the schematic, and used as anticoincidence and coincidence triggers, respectively. The non-
formatted ends of the two center IICCD planes were read out with standard photomultiplier tubes (S2, S3), and
used for off-line coincidence signals.

The four MAPMT planes had 30 square fibers arranged in single layer close packed arrays with 4, 6, 8, and
12 fibers per plane, with the 4-fiber plane closest to the incident beam, and the 12-fiber plane at the back of the
apparatus. The planes were separated by 1.9 cm. One end of each fiber was formatted on to one of the 64 MAPMT
anodes, and the other end was sealed. At the time of the test, we were able to instrument 24 of the 30 fibers onto
the MAPMT. A tantalum converter foil of thickness 1/11 radiation length was glued to the first (4-fiber) plane, and
a 0.63 cm plastic scintillator plate was placed behind the four planes to act as a coincidence trigger (S5) used in
conjunction with an anticoincidence signal from S4 (see Figure 2).

3. JEFFERSON LAB TEST FACILITY
The beam test was held in 1998 July at the Thomas Jefferson National Laboratory Hall B, as a parasitic experiment
to the CLAS instrument.3 The accelerated electron beam was directed through a Bremsstrahlung tagging system in
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Figure 3. CCD image of 30,000 integrated events. The regions of most significant fiber response have been
accentuated.

which the electrons radiate gamma rays. Approximately 1% of the gamma rays were tagged with energy and time of
flight information. The photons then passed through the CLAS instrument before reaching the beam test apparatus.
The tagging system provided energy information for photons in the energy range of 'O.3—2 GeV in multiple tag
channels. Three tag channels (495 MeV, 1 GeV, and 1.66 GeV) were used for the fiber planes read out with the
IICCD. These channels were used as a readout coincidence requirement in combination with the plastic scintillator
coincidence/anticoincidence signals described in section 2. The fiber planes read out with the MAPMT did not have
an energy tag line.

During two weeks of testing, the beam rate was frequently too high (1O Hz) for the instrument to effectively
measure individual photon events. We accumulated approximately five hours of observations during times when the
beam rate was reduced by >98%, resulting in several thousand triggers.

4. HCCD DATA ANALYSIS
The eight planes of the JLab—98 beam test apparatus that were read out with the IICCD contained a total of 521
fibers. These fibers were closely packed and formatted onto the face of the CCD array. Fibers that were physically
adjacent on the face of the CCD array did not necessarily correspond to adjacent fibers in the beam test apparatus,
resulting in a two stage mapping process: illuminated CCD pixels were mapped to corresponding fiber indices, and
the indices were then converted to real-space coordinates. Note that in this readout system, scintillation light from
any single fiber can be dispersed by the image intensifier such that additional nearby pixels can be recorded as
illuminated. Since there must be the complicated deconvolution process as described above in order to recover the
incident photon track, the net result is that the track can be contaminated with illuminated fibers that do not conform
to the true particle track. In order to reduce these artifacts, we integrated 30,000 beam test events and used the
resulting image to build a CCD pixel map that contained only the most significant regions of fiber response. Regions
between fibers were suppressed, resulting in lower detection efficiency. The adjusted image is shown in Figure 3. A
template was created on this image, and the resulting pixel-to-fiber index map was used in the deconvolution process.

We performed detailed simulations of the beam test setup using the GEANT4 Monte Carlo particle transport
package. Non-ideal fiber efficiency was included in the simulations by randomly selecting pulse heights from a Poisson
distribution. An experimentally determined mean value of 3 photoelectrons per minimum ionizing energy deposit
was used, yielding a fiber efficiency of '95%. Prior to the beam test run, the simulation data were used to develop
algorithms for data analysis and reconstruction of incident photon direction. Using the new CCD pixel-to-fiber map
to deconvolve the pixel data, we applied these algorithms to the IICCD data in order to estimate the angular response
and fiber efficiency.

To fit incident photon tracks, the triggered events were subject to several requirements, such as the total number
of fibers that were illuminated in each of the x and y projections, and the depth of the first plane that was hit.
Beginning at the first plane, sets of three hit planes common to both projections were identified. These planes were
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Figure 4. Simulated beam test fiber hits of 8 planes read out with the IICCD, and the resulting tracks. The incident
photon direction is estimated by the heavy dashed lines.

-4 -2 0 2
Angular Response (deg)

Figure 5. Simulated angular response functions for the JLab-98 beam test setup for three input photon energies.

considered as possible vertex points for a pair-conversion event. To identify a straight track through the fiber plane
stack, a linear x2 test on sets of three track points was used to discriminate among multiple hits on individual planes.
The hit yielding the lowest reduced x2 less than a maximum allowed value was chosen for the next track point, and
the process was repeated until the end of the fiber stack was reached. The algorithm results in a primary photon
track with the minimum dispersion. A second pass of the algorithm was then used to identify the secondary track,
where the dispersion allowance for the track was increased from that of the primary track. Although difficult for a
system with just several fiber planes, it would be straightforward to determine the most energetic track in a deep
detector stack, and use this information to identify the photon primary and secondary tracks. We used only the
primary track fit for the IICCD data of the JLab-98 test. For the MAPMT data (discussed below), the bisector
of the primary and secondary tracks was used. Figure 4 shows an example of a simulated event and the resulting
photon track.

The reconstructed incident photon directions derived from the triggered beam test events form a two-dimensional
angular point spread response function about the given source location. The projection of this distribution onto one
dimension for a simulated dataset is shown in Figure 5 for each of the three beam tag energies that were available.
The 68% containment angles are given as a measure of the width of the distributions. As the energy increases, the
distribution narrows due to smaller opening and dispersion angles for pair conversions.

Analysis of the IICCD fiber data was complicated by the relatively slow response time of the IICCD, and the
large bulk of fibers outside the 2 x 2 cm active region. These factors resulted in a large fraction of events where single
particle tracks were not clearly evident in one or both projections, even during low beam rate conditions; therefore
automated event selection of the IICCD data was not possible. We manually searched several thousand events for
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Figure 6. IICCD beam test fiber tracks. Round and square symbols (not to scale) indicate hits in the round and
square fibers, respectively. The dashed lines indicate the reconstructed incident photon primary track.
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Figure 7. Angular response function for 110 IICCD events (solid line), compared with the response derived from
simulations (dashed line).

candidates of single photon conversions. A sample candidate event is shown in Figure 6. As shown in the figure,
contamination of nearby pixels on the CCD frame has not been completely eliminated by the mapping technique.

The tracking algorithm described above was able to reconstruct 1 10 of the selected candidate events. The
angular response for these reconstructed events is shown in Figure. 7. Also shown in the figure is the response derived
from simulations. The experimental distribution is wider than the distribution of the simulations. The most likely
explanations are the pixel contamination on the CCD frame, and multiple gamma—ray conversion events within the
fiber planes. Both of these situations cause spurious hits near the particle path, which translate into errors in the
track reconstruction process. Simulations including randomly distributed fiber hits near to the true particle tracks
support this hypothesis.

5. MAPMT DATA ANALYSIS
We performed similar simulations for the fiber planes read out with the MAPMT. Incident particle tracks and angular
response are shown in Figures 8 and 9. The track reconstruction algorithm described above and used for the IICCD
analysis was also used in the MAPMT analysis. Comparison of Figures 5 and 9 show that the angular resolution
for the MAPMT setup was less that that of the IICCD setup. This is due to the smaller number of fiber planes (4)
in the MAPMT system. With four planes, it is difficult to identify the most energetic track, and hence derive the
photon directional information.
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Figure 8. Simulated beam test fiber hits of planes read out with the MAPMT, and the resulting photon tracks. The
incident photon direction is estimated as the weighted bisector of the primary and secondary tracks (heavy dashed
line).

Figure 9. Simulated angular response function for the MAPMT fiber planes for three input photon energies.
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Figure 10. Three MAPMT beam test events showing the array of 24 fibers in 4 planes, with illuminated fibers
shown by filled squares The dashed lines indicate the reconstructed incident photon track.

The MAPMT fiber data are relatively clean compared with the IICCD events. The fast response time helps
to ensure that instrument triggers are single photon conversion events. However, the small number of fiber planes
creates difficulties in identifying particle tracks. For example, conversion events can exit the system before crossing
all fiber planes, resulting in fewer plane hits used as input into the track reconstruction algorithm. To filter the data,
candidate events were required to have at lease one fiber hit on the plane closest to the incident beam (MAPMT
plane 1), and to have hits on at least two additional planes. A set of 5582 events satisfied these criteria, 4551 of
which were successfully reconstructed. Three examples of these reconstructed events are shown in Figure 10. The
angular response function for these reconstructed events is shown in Figure 1 1. The agreement is reasonable given
the uncertainty in the beam spectrum.

The detection efficiency of the MAPMT fibers was computed by counting single track events that hit the plane
of interest, and its neighboring planes. The efficiency measured in this manner is 93.8% for MAPMT plane 2, and
92.4% for plane 3. The result for plane 3 is a better measure of the single particle efficiency since plane 2 is closer
to the vertex, and thus has a higher probability for two photons to pass through the same fiber. This efficiency is in
agreement with that measured for a setup using a Phillips MAPMT and Kuraray fibers.5

6. FUTURE WORK
The LSU-99 beam test instrument is composed of twenty planes of orthogonal x-y layers of scintillating fibers spaced
2 cm apart. Each x-y plane is mounted on an aluminum frame and composed of two parts: detector fibers and
guard fibers. All of the guard fibers are square blue-emitting fibers with 1 mm cross-section produced by Washington
University and are readout out on one end with Phillips XP2020 photomultiplier tubes. These signals are entered
into the data stream to determine if fibers above, below, to the right or to the left of the detector fibers were hit. The
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Figure 11. Angular response function for 4551 MAPMT events (solid line), compared with the response derived
from simulations (dashed line).

guard fibers cover an area of 2 cm on all sides of the active area of the planes. All of the fibers within the detector
volume are blue-emitting square fibers with 0.75 mm cross-section. Each plane has a thin converter plate of 0.003
in. tantalum (1/54th ri) covering the active area of the plane.

The detector system is composed of three modules. Four planes of x-y fibers are in module A, which has 16
detector fibers each in x and y with an active area of 1 .44 cm2 . These detector fibers are multiclad and were
manufactured in a joint effort between Bicron and Washington University. The fibers are readout on one end by
Hamamatsu R5900-O0-064 multianode photomultiplier tubes with one fiber on each anode. The opposite end has
been diamond polished and a mirror had been vacuum deposited at a facility at Fermi National Laboratory. The
detector fibers of this type are referred to as Bicron/WU/Fermi fibers. Module B contains eight planes with 32
detector fibers in the y-layer and 16 detector fibers in the x-layer for an active area of 2.88 cm2 .The first 5 layers of
y-fibers are composed of Bicron/WU/Fermi fibers with the remaining 3 layers of y-fibers composed of Bicron/WU
fibers with a front surface mirror coupled to the far end instead of a deposited mirror. The x-layer detector fibers
manufactured at Washington University are multiclad with a front surface mirror coupled to the far end, and denoted
as \VU fibers. Module C contains eight layers with 64 detector fibers in the y-layer and 32 fibers in the x-layer. All
of the detector fibers in module C are WU fibers. The active area of these planes is 1 1 .52 cm2 . A schematic of the
beam test apparatus is shown in Figure 12.

In front of the detector planes is a scintillator covering the entire area of the aluminum frames that is used in
anticoincidence with a scintillator at the rear of the fiber planes. These scintillators can be used to trigger a read
of the MAPMTs. The MAPMTs are readout with custom electronics designed and built at Washington University.
Each anode signal is amplified and compared to an adjustable discriminator that fires if above threshold. The signal
is high for '15 ts and the "hit" pattern is read out if coincidence has been satisfied. Coincidence can be set to be the
anticoincidence of the front scintillator with the coincidence of the rear scinillator, or can be set to a self-triggered
mode. The self-trigger is determined by looking for hits in n layers out of m layers, where n and m can be set to any
integer. For example, a trigger might occur on any event that had 4 layers hit out of 5 consecutive layers. Louisiana
State University built the self-trigger electronics.

A total of 1280 detector fibers are used in the active area and read out by 20 MAPMTs. There are 1600 guard
fibers read out by 4 XP2020 PMTs. Figure 13 shows one of the electronics racks manufactured at Washington
University to hold the MAPMTs and associated electronics. A single MAPMT is visible in the image. Sixty-four
fibers (not shown) will be formatted onto the front face of the MAPMT and placed into the main detector volume.

Two separate beam tests will be performed with this instrument. The first will be at the Center for Advanced
Microstructures and Devices, a synchrotron light source in Louisiana capable of producing photons with energy up to
1.5 GeV. This will allow us to test the self-trigger mode in several configurations. For the energy measurement, a NaT
calorimeter will be placed behind the instrument and its photomultiplier tube signals will be pulse height analyzed and
entered into the event data stream. The second test will occur at Thomas Jefferson National Laboratory Continuous

2
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Figure 13. Electronics rack for the LSU-99 beamii test, with a single MAPM'I'. Sixty-four scintillation flIers (not
shown) will he formatted onto the front face of the MAPMI', and placed into the main detector volume.
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Electron Beam Facility using the Hall B tagged photon beam. The instrument will be triggered externally in
coincidence with tagged energy photons.

7. SUMMARY AND CONCLUSIONS
Our analysis indicates that the JLab-98 beam test apparatus successfully demonstrated the fiber tracking capability
of the FiberGLAST instrument concept. Single gamma—ray conversion events were clearly detected and tracked even
within the limited detector volume of the test. High spatial resolution was achieved by the scintillating fiber planes
using two different fiber readout devices.

The advantages of the MAPMT readout system over an IICCD system were evident in the quality of the fiber hit
data we recorded during the test. The single MAPMT performed exceedingly well. These devices have also recently
undergone successful vibration testing at the Marshall Space Flight Center in Huntsville, Alabama to verify their
flight readiness.

This test has indicated desirable refinements for future testing that we plan to incorporate in our upcoming
second test at Louisiana State University in the summer of 1999. We will increase the depth of the fiber stack to
20 planes in order to measure and reconstruct single particle tracks more effectively, and increase the fiber count
(effective area). This test will more closely model the final FiberGLAST concept configuration.

ACKNOWLEDGMENTS
The work was supported by NASA grant NAG5-5112. The authors would like to thank the CLAS experiment team
for their consideration and help during the beam test at Jefferson National Laboratory.

REFERENCES
1. Pendleton, G. N., et a!., "Development of a Gamma—Ray Scintillating Fiber Telescope for Energetic Radiation

(SIFTER) with Simultaneous Tracking and Calorimetry" ,SPIE Proc., 2806, 164, 1996.
2. Pendleton, G. N., et al., "Scientific Capabilities of SIFTER for Discovering and Monitoring Gamma—Ray Bursts

and Active Galactic Nuclei", SPIE Proc., 3446, 247, 1998.
3. Burkert, V. D. & Mecking, B. A., "Large Acceptance Detectors for Electromagnetic Nuclear Physics", Modern

Topics in Electron Scattering, eds. B. Frois & I. Sick, World Scientific, Singapore, 1991.
4. CERN Program Library Long Writeup W5013, "GEANT-detector description and simulation tool", CERN,

Geneva, 1993.

5. Agoritsas, V., et al., "Read-out of Scintillating Fibers Using a Weak Cross-Talk Position-Sensitive Photomulti-
plier", Nuci. Inst. Meth. in Phys. A, A406, 393, 1998.

32

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/25/2014 Terms of Use: http://spiedl.org/terms


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	10-22-1999

	Beam test results for the FiberGLAST instrument
	Robert S. Mallozzi
	R M. Kippen
	Geoffrey N. Pendleton
	W Paciesas
	Georgia A. Richardson
	See next page for additional authors
	Recommended Citation
	Authors


	 

