21 research outputs found

    Hot Start PCR with heat-activatable primers: a novel approach for improved PCR performance

    Get PDF
    The polymerase chain reaction (PCR) is widely used for applications which require a high level of specificity and reliability, such as genetic testing, clinical diagnostics, blood screening, forensics and biodefense. Great improvements to PCR performance have been achieved by the use of Hot Start activation strategies that aim to prevent DNA polymerase extension until more stringent, higher temperatures are reached. Herein we present a novel Hot Start activation approach in PCR where primers contain one or two thermolabile, 4-oxo-1-pentyl (OXP) phosphotriester (PTE) modification groups at 3′-terminal and 3′-penultimate internucleotide linkages. Studies demonstrated that the presence of one or more OXP PTE modifications impaired DNA polymerase primer extension at the lower temperatures that exist prior to PCR amplification. Furthermore, incubation of the OXP-modified primers at elevated temperatures was found to produce the corresponding unmodified phosphodiester (PDE) primer, which was then a suitable DNA polymerase substrate. The OXP-modified primers were tested in conventional PCR with endpoint detection, in one-step reverse transcription (RT)–PCR and in real-time PCR with SYBR Green I dye and Taqman® probe detection. When OXP-modified primers were used as substitutes for unmodified PDE primers in PCR, significant improvement was observed in the specificity and efficiency of nucleic acid target amplification

    Hot Start PCR with heat-activatable primers: a novel approach for improved PCR performance

    Get PDF
    The polymerase chain reaction (PCR) is widely used for applications which require a high level of specificity and reliability, such as genetic testing, clinical diagnostics, blood screening, forensics and biodefense. Great improvements to PCR performance have been achieved by the use of Hot Start activation strategies that aim to prevent DNA polymerase extension until more stringent, higher temperatures are reached. Herein we present a novel Hot Start activation approach in PCR where primers contain one or two thermolabile, 4-oxo-1-pentyl (OXP) phosphotriester (PTE) modification groups at 3′-terminal and 3′-penultimate internucleotide linkages. Studies demonstrated that the presence of one or more OXP PTE modifications impaired DNA polymerase primer extension at the lower temperatures that exist prior to PCR amplification. Furthermore, incubation of the OXP-modified primers at elevated temperatures was found to produce the corresponding unmodified phosphodiester (PDE) primer, which was then a suitable DNA polymerase substrate. The OXP-modified primers were tested in conventional PCR with endpoint detection, in one-step reverse transcription (RT)–PCR and in real-time PCR with SYBR Green I dye and Taqman® probe detection. When OXP-modified primers were used as substitutes for unmodified PDE primers in PCR, significant improvement was observed in the specificity and efficiency of nucleic acid target amplification

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation

    No full text
    <div><p>For most sample types, the automation of RNA and DNA sample preparation workflows enables high throughput next-generation sequencing (NGS) library preparation. Greater adoption of small RNA (sRNA) sequencing has been hindered by high sample input requirements and inherent ligation side products formed during library preparation. These side products, known as adapter dimer, are very similar in size to the tagged library. Most sRNA library preparation strategies thus employ a gel purification step to isolate tagged library from adapter dimer contaminants. At very low sample inputs, adapter dimer side products dominate the reaction and limit the sensitivity of this technique. Here we address the need for improved specificity of sRNA library preparation workflows with a novel library preparation approach that uses modified adapters to suppress adapter dimer formation. This workflow allows for lower sample inputs and elimination of the gel purification step, which in turn allows for an automatable sRNA library preparation protocol.</p></div

    Uridine Depletion and Chemical Modification Increase Cas9 mRNA Activity and Reduce Immunogenicity without HPLC Purification

    No full text
    The Cas9/guide RNA (Cas9/gRNA) system is commonly used for genome editing. mRNA expressing Cas9 can induce innate immune responses, reducing Cas9 expression. First-generation Cas9 mRNAs were modified with pseudouridine and 5-methylcytosine to reduce innate immune responses. We combined four approaches to produce more active, less immunogenic second-generation Cas9 mRNAs. First, we developed a novel co-transcriptional capping method yielding natural Cap 1. Second, we screened modified nucleotides in Cas9 mRNA to identify novel modifications that increase Cas9 activity. Third, we depleted the mRNA of uridines to improve mRNA activity. Lastly, we tested high-performance liquid chromatography (HPLC) purification to remove double-stranded RNAs. The activity of these mRNAs was tested in cell lines and primary human CD34+ cells. Cytokines were measured in whole blood and mice. These approaches yielded more active and less immunogenic mRNA. Uridine depletion (UD) most impacted insertion or deletion (indel) activity. Specifically, 5-methoxyuridine UD induced indel frequencies as high as 88% (average ± SD = 79% ± 11%) and elicited minimal immune responses without needing HPLC purification. Our work suggests that uridine-depleted Cas9 mRNA modified with 5-methoxyuridine (without HPLC purification) or pseudouridine may be optimal for the broad use of Cas9 both in vitro and in vivo. Keywords: mRNA, capping, Cas9, innate immunity, CRISPR, CleanCap, mRNA, uridine depletion, ARCA, Cap
    corecore