710 research outputs found

    Superparasitism Drives Heritable Symbiont Epidemiology and Host Sex Ratio in a Wasp

    Get PDF
    Heritable microbial symbionts have profound impacts upon the biology of their arthropod hosts. Whilst our current understanding of the dynamics of these symbionts is typically cast within a framework of vertical transmission only, horizontal transmission has been observed in a number of cases. For instance, several symbionts can transmit horizontally when their parasitoid hosts share oviposition patches with uninfected conspecifics, a phenomenon called superparasitism. Despite this, horizontal transmission, and the host contact structures that facilitates it, have not been considered in heritable symbiont epidemiology. Here, we tested for the importance of host contact, and resulting horizontal transmission, for the epidemiology of a male-killing heritable symbiont (Arsenophonus nasoniae) in parasitoid wasp hosts. We observed that host contact through superparasitism is necessary for this symbiont’s spread in populations of its primary host Nasonia vitripennis, such that when superparasitism rates are high, A. nasoniae almost reaches fixation, causes highly female biased population sex ratios and consequently causes local host extinction. We further tested if natural interspecific variation in superparasitism behaviours predicted symbiont dynamics among parasitoid species. We found that A. nasoniae was maintained in laboratory populations of a closely related set of Nasonia species, but declined in other, more distantly related pteromalid hosts. The natural proclivity of a species to superparasitise was the primary factor determining symbiont persistence. Our results thus indicate that host contact behaviour is a key factor for heritable microbe dynamics when horizontal transmission is possible, and that ‘reproductive parasite’ phenotypes, such as male-killing, may be of secondary importance in the dynamics of such symbiont infections

    Analysis and Prediction of the Metabolic Stability of Proteins Based on Their Sequential Features, Subcellular Locations and Interaction Networks

    Get PDF
    The metabolic stability is a very important idiosyncracy of proteins that is related to their global flexibility, intramolecular fluctuations, various internal dynamic processes, as well as many marvelous biological functions. Determination of protein's metabolic stability would provide us with useful information for in-depth understanding of the dynamic action mechanisms of proteins. Although several experimental methods have been developed to measure protein's metabolic stability, they are time-consuming and more expensive. Reported in this paper is a computational method, which is featured by (1) integrating various properties of proteins, such as biochemical and physicochemical properties, subcellular locations, network properties and protein complex property, (2) using the mRMR (Maximum Relevance & Minimum Redundancy) principle and the IFS (Incremental Feature Selection) procedure to optimize the prediction engine, and (3) being able to identify proteins among the four types: “short”, “medium”, “long”, and “extra-long” half-life spans. It was revealed through our analysis that the following seven characters played major roles in determining the stability of proteins: (1) KEGG enrichment scores of the protein and its neighbors in network, (2) subcellular locations, (3) polarity, (4) amino acids composition, (5) hydrophobicity, (6) secondary structure propensity, and (7) the number of protein complexes the protein involved. It was observed that there was an intriguing correlation between the predicted metabolic stability of some proteins and the real half-life of the drugs designed to target them. These findings might provide useful insights for designing protein-stability-relevant drugs. The computational method can also be used as a large-scale tool for annotating the metabolic stability for the avalanche of protein sequences generated in the post-genomic age

    Weather in stellar atmosphere: the dynamics of mercury clouds in alpha Andromedae

    Full text link
    The formation of long-lasting structures at the surfaces of stars is commonly ascribed to the action of strong magnetic fields. This paradigm is supported by observations of evolving cool spots in the Sun and active late-type stars, and stationary chemical spots in the early-type magnetic stars. However, results of our seven-year monitoring of mercury spots in non-magnetic early-type star alpha Andromedae show that the picture of magnetically-driven structure formation is fundamentally incomplete. Using an indirect stellar surface mapping technique, we construct a series of 2-D images of starspots and discover a secular evolution of the mercury cloud cover in this star. This remarkable structure formation process, observed for the first time in any star, is plausibly attributed to a non-equilibrium, dynamical evolution of the heavy-element clouds created by atomic diffusion and may have the same underlying physics as the weather patterns on terrestrial and giant planets.Comment: 10 pages, 2 figures; to be published in Nature Physic

    The Effect of Bacterial Infection on the Biomechanical Properties of Biological Mesh in a Rat Model

    Get PDF
    BACKGROUND: The use of biologic mesh to repair abdominal wall defects in contaminated surgical fields is becoming the standard of practice. However, failure rates and infections of these materials persist clinically. The purpose of this study was to determine the mechanical properties of biologic mesh in response to a bacterial encounter. METHODS: A rat model of Staphylococcus aureus colonization and infection of subcutaneously implanted biologic mesh was used. Samples of biologic meshes (acellular human dermis (ADM) and porcine small intestine submucosa (SIS)) were inoculated with various concentrations of methicillin-resistant Staphylococcus aureus [10(5), 10(9) colony-forming units] or saline (control) prior to wound closure (n = 6 per group). After 10 or 20 days, meshes were explanted, and cultured for bacteria. Histological changes and bacterial recovery together with biomechanical properties were assessed. Data were compared using a 1-way ANOVA or a Mann-Whitney test, with p<0.05. RESULTS: The overall rate of staphylococcal mesh colonization was 81% and was comparable in the ADM and SIS groups. Initially (day 0) both biologic meshes had similar biomechanical properties. However after implantation, the SIS control material was significantly weaker than ADM at 20 days (p = 0.03), but their corresponding modulus of elasticity were similar at this time point (p>0.05). After inoculation with MRSA, a time, dose and material dependent decrease in the ultimate tensile strength and modulus of elasticity of SIS and ADM were noted compared to control values. CONCLUSION: The biomechanical properties of biologic mesh significantly decline after colonization with MRSA. Surgeons selecting a repair material should be aware of its biomechanical fate relative to other biologic materials when placed in a contaminated environment

    Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix

    Get PDF
    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell–cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications

    Screening non-coding RNAs in transcriptomes from neglected species using PORTRAIT: case study of the pathogenic fungus Paracoccidioides brasiliensis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcriptome sequences provide a complement to structural genomic information and provide snapshots of an organism's transcriptional profile. Such sequences also represent an alternative method for characterizing neglected species that are not expected to undergo whole-genome sequencing. One difficulty for transcriptome sequencing of these organisms is the low quality of reads and incomplete coverage of transcripts, both of which compromise further bioinformatics analyses. Another complicating factor is the lack of known protein homologs, which frustrates searches against established protein databases. This lack of homologs may be caused by divergence from well-characterized and over-represented model organisms. Another explanation is that non-coding RNAs (ncRNAs) may be caught during sequencing. NcRNAs are RNA sequences that, unlike messenger RNAs, do not code for protein products and instead perform unique functions by folding into higher order structural conformations. There is ncRNA screening software available that is specific for transcriptome sequences, but their analyses are optimized for those transcriptomes that are well represented in protein databases, and also assume that input ESTs are full-length and high quality.</p> <p>Results</p> <p>We propose an algorithm called PORTRAIT, which is suitable for ncRNA analysis of transcriptomes from poorly characterized species. Sequences are translated by software that is resistant to sequencing errors, and the predicted putative proteins, along with their source transcripts, are evaluated for coding potential by a support vector machine (SVM). Either of two SVM models may be employed: if a putative protein is found, a protein-dependent SVM model is used; if it is not found, a protein-independent SVM model is used instead. Only <it>ab initio </it>features are extracted, so that no homology information is needed. We illustrate the use of PORTRAIT by predicting ncRNAs from the transcriptome of the pathogenic fungus <it>Paracoccidoides brasiliensis </it>and five other related fungi.</p> <p>Conclusion</p> <p>PORTRAIT can be integrated into pipelines, and provides a low computational cost solution for ncRNA detection in transcriptome sequencing projects.</p

    Toward a Theory of Child Well-Being

    Get PDF
    Assuring the well-being of children has emerged over the past several decades as an important goal for health and social policymakers. Although the concept of child well-being has been operationalized and measured in different ways by different child-serving entities, there are few unifying theories that could undergird and inform these various conceptual and measurement efforts. In this paper, we attempt to construct a theory of child well-being. We first review the social and policy history of the concept of child well-being, and briefly review its measurement based on these conceptualizations. We then examine three types of theories of well-being extant in philosophy - mental states theories, desire-based theories and needs-based theories - and investigate their suitability to serve as prototypes of a theory of child well-being. We develop a constraint that child well-being is important in and of itself and not merely as a way station to future adult well-being (we call this a non-reduction constraint). Using this constraint, we identify the limitations of each of the three sets of theories to serve as a basis for a theory of child well-being. Based on a developmentalist approach, we then articulate a theory of child well-being that contains two conditions. First, a child's stage-appropriate capacities that equip her for successful adulthood, given her environment; and, second, an engagement with the world in child-appropriate ways. We conclude by reviewing seven implications of this theoretical approach for the measurement of child well-being. Key Words Child well-being, philosophy, social policy, child developmentNoneThis is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s11205-014-0665-
    corecore