110 research outputs found

    Sodium and Oxygen Abundances in the Open Cluster NGC 6791 from APOGEE H-Band Spectroscopy

    Get PDF
    The open cluster NGC 6791 is among the oldest, most massive and metal-rich open clusters in the Galaxy. High-resolution HH-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) of 11 red giants in NGC 6791 are analyzed for their chemical abundances of iron, oxygen, and sodium. The abundances of these three elements are found to be homogeneous (with abundance dispersions at the level of \sim 0.05 - 0.07 dex) in these cluster red giants, which span much of the red-giant branch (Teff_{\rm eff} \sim 3500K - 4600K), and include two red-clump giants. From the infrared spectra, this cluster is confirmed to be among the most metal-rich clusters in the Galaxy ( = 0.34 ±\pm 0.06), and is found to have a roughly solar value of [O/Fe] and slightly enhanced [Na/Fe]. Non-LTE calculations for the studied Na I lines in the APOGEE spectral region (λ\lambda16373.86\AA\ and λ\lambda16388.85\AA) indicate only small departures from LTE (\leq 0.04 dex) for the parameter range and metallicity of the studied stars. The previously reported double population of cluster members with different Na abundances is not found among the studied sample.Comment: Accepted for publication at ApJ Letter

    Chemical abundance gradients from open clusters in the Milky Way disk: results from the APOGEE survey

    Get PDF
    Metallicity gradients provide strong constraints for understanding the chemical evolution of the Galaxy. We report on radial abundance gradients of Fe, Ni, Ca, Si, and Mg obtained from a sample of 304 red-giant members of 29 disk open clusters, mostly concentrated at galactocentric distances between ~8 - 15 kpc, but including two open clusters in the outer disk. The observations are from the APOGEE survey. The chemical abundances were derived automatically by the ASPCAP pipeline and these are part of the SDSS III Data Release 12. The gradients, obtained from least squares fits to the data, are relatively flat, with slopes ranging from -0.026 to -0.033 dex/kpc for the alpha-elements [O/H], [Ca/H], [Si/H] and [Mg/H] and -0.035 dex/kpc and -0.040 dex/kpc for [Fe/H] and [Ni/H], respectively. Our results are not at odds with the possibility that metallicity ([Fe/H]) gradients are steeper in the inner disk (R_GC ~7 - 12 kpc) and flatter towards the outer disk. The open cluster sample studied spans a significant range in age. When breaking the sample into age bins, there is some indication that the younger open cluster population in our sample (log age < 8.7) has a flatter metallicity gradient when compared with the gradients obtained from older open clusters.Comment: 4 pages, 3 figures, To appear in Astronomische Nachrichten, special issue "Reconstruction the Milky Way's History: Spectroscopic surveys, Asteroseismology and Chemo-dynamical models", Guest Editors C. Chiappini, J. Montalb\'an, and M. Steffen, AN 2016 (in press)

    Perillyl alcohol in Solid Lipid Nanoparticles (SLN-PA): Cytotoxicity and antitumor potential in sarcoma 180 mice model

    Get PDF
    Cancer is a group of diseases characterized by the uncontrolled growth of cells. These cells invade organs and tissues by extension or direct dissemination and can spread to other regions of the body. Nanomedicine offers many possibilities to prevent the spread of cancer tissue and help cure the disease. In this work, solid lipid nanoparticles (SLN) were used to encapsulate perillyl alcohol (PA), a volatile monoterpene with proven anticancer activity. Encapsulation of PA into SLN (SLN-PA) is expected to promote controlled release, increase PA bioavailability, and impair the volatility of the monoterpene. SLN-PA prepared by high-shear homogenization showed average particle diameter around 254 nm, polydispersity index ~ 0.35, zeta potential ~ -14.7 mV, and encapsulation efficiency 84.6%. Scanning electron microscope analysis revealed a decrease in crystallinity, suggesting the encapsulation of PA in the SLN, confirming the spherical shape and the loading of the monoterpene in the SLN. In vitro cytotoxicity assays against murine fibroblasts (L929) showed that SLN-PA in both treated doses did not induce any cytotoxicity on non-tumoral cells. In vivo antitumor effect of the SLN-PA was evaluated in sarcoma 180-transplanted mice. The in vivo results demonstrated a significant tumor inhibition rate of 51.76 and 54.49% via intraperitoneal application of SLN-PA at doses of 100 and 200 mg/kg/day (p < 0.05), respective when compared to the negative control (dimethyl sulfoxide). Adverse side effects of SLN-PA were not noticed in the liver, the kidney, or spleen tissue. The developed SLN-PA can be considered as a safe approach for site-specific antitumor effect in vivo, reinterpreting new nanoparticles- based cancer therapy.This work was supported by the Banco do Nordeste (grant FUNDECI/2016.0015), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio à Pesquisa e à Inovação Tecnológica do Estado de Sergipe (Fapitec) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Eliana B. Souto would like to acknowledge the Portuguese Science and Technology Foundation (FCT/MCT) and from European Funds (PRODER/COMPETE) for the project UIDB/04469/2020 (strategic fund), co-financed by FEDER, under the Partnership Agreement PT2020.info:eu-repo/semantics/publishedVersio

    Use of amperometric and potentiometric probes in scanning electrochemical microscopy for the spatially-resolved monitoring of severe localized corrosion sites on aluminum alloy 2098-T351

    Get PDF
    Amperometric and potentiometric probes were employed for the detection and characterization of reactive sites on the 2098-T351 Al-alloy (AA2098-T351) using scanning electrochemical microscopy (SECM). Firstly, the probe of concept was performed on a model Mg-Al galvanic pair system using SECM in the amperometric and potentiometric operation modes, in order to address the responsiveness of the probes for the characterization of this galvanic pair system. Next, these sensing probes were employed to characterize the 2098-T351 alloy surface immersed in a saline aqueous solution at ambient temperature. The distribution of reactive sites and the local pH changes associated with severe localized corrosion (SLC) on the alloy surface were imaged and subsequently studied. Higher hydrogen evolution, lower oxygen depletion and acidification occurred at the SLC sites developed on the 2098-T351 Al-allo

    Municipal Coastal Management and National Policy for the Conservation and Sustainable Use of the Brazilian Marine Biome: A Critical Analysis

    Get PDF
    The Coastal Zone (CZ), declared as National Heritage by the 1988 Federal Constitution, is endowed as an area of strategic importance. Coastal economic activities are responsible for the majority portion of the national Gross Domestic Product (GDP), linked to ports, fishing, mining (i.e., oil), and tourism. Thus, the intense degradation of natural resources puts both socio-economic sustainability and local populations’ environmental quality at risk. This study presents actors and public policies relevant to Integrated Coastal Zone Management (ICZM). It seeks to resolve existing conflicts while respecting the compatibility of coastal uses sustainably, considering that the interrelationships of economic, environmental and social phenomena resulting from the overlapping of the different uses of the Brazilian coast generate different impacts. The study aims to assess municipal coastal management in line with Marine Spatial Plans (MSP), with relevance to the provisions of Bill nº 6969/2013. Such legislation “institutes the National Policy for the Conservation and Sustainable Use of the Marine Biome and associated coastal ecosystems (PNCMar)” and analyses municipal public power, between integral and participant of the integrated coastal management, together with union and state governments, responsible for elaborating, implementing, executing and monitoring their respective Coastal Management Plans. The methodology consists of collecting bibliographic and documentary data and reviewing articles, laws, bills, federal decrees and classic texts that addressed ICZM and MSP. For an integrated, sustainable coastal management, Bill nº 6969/2013 requires adjustments, with coastal municipalities remaining in management in a decentralised, participatory manner to make their local spatial planning instruments compatible.A Zona Costeira (ZC), declarada como Patrimônio Nacional pela Constituição Federal de 1988, é dotada de área de importância estratégica. As atividades econômicas costeiras são responsáveis pela maior parte do Produto Interno Bruto (PIB) nacional, vinculadas a portos, pesca, mineração (ou seja, petróleo) e turismo. Assim, a intensa degradação dos recursos naturais coloca em risco a sustentabilidade socioeconômica e a qualidade ambiental das populações locais. Este estudo apresenta atores e políticas públicas relevantes para a Gestão Integrada da Zona Costeira (GIZC). Procura resolver os conflitos existentes respeitando a compatibilidade dos usos costeiros de forma sustentável, considerando que as inter-relações dos fenômenos econômicos, ambientais e sociais decorrentes das sobreposições dos diferentes usos da costa brasileira geram diferentes impactos. O estudo visa avaliar a gestão costeira municipal em consonância com os Planos Espaciais Marinhos (PEM), com relevância para o disposto no Projeto de Lei n.º 6969/2013. Tal legislação “institui a Política Nacional de Conservação e Uso Sustentável do Bioma Marinho e ecossistemas costeiros associados (PNCMar)” e analisa o poder público municipal, ente integrante e participante da gestão costeira integrada, junto aos governos federal e estadual, responsáveis para a elaboração, implementação, execução e monitoramento dos respectivos Planos de Gerenciamento Costeiro. A metodologia consiste na coleta de dados bibliográficos e documentais e na revisão de artigos, leis, projetos de lei, decretos federais e textos clássicos que versavam sobre GIZC e PEM. Para uma gestão costeira integrada e sustentável, o Projeto de Lei nº 6969/2013 requer ajustes, permanecendo os municípios costeiros na gestão de forma descentralizada e participativa para compatibilizar seus instrumentos de ordenamento do território local

    Preparation of a Nanoemulsion with Carapa guianensis

    Get PDF
    Andiroba (Carapa guianensis) seeds are the source of an oil with a wide range of biological activities and ethnopharmacological uses. However, few studies have devoted attention to innovative formulations, including nanoemulsions. The present study aimed to obtain a colloidal system with the andiroba oil using a low-energy and organic-solvent-free method. Moreover, the preliminary residual larvicidal activity of the nanoemulsion against Aedes aegypti was evaluated. Oleic and palmitic acids were the major fatty acids, in addition to the phytosterol β-sitosterol and limonoids (tetranortriterpenoids). The required hydrophile-lipophile was around 11.0 and the optimal nanoemulsion was obtained using polysorbate 85. The particle size distribution suggested the presence of small droplets (mean diameter around 150 nm) and low polydispersity index (around 0.150). The effect of temperature on particle size distribution revealed that no major droplet size increase occurred. The preliminary residual larvicidal assay suggested that the mortality increased as a function of time. The present study allowed achievement of a potential bioactive oil in water nanoemulsion that may be a promising controlled release system. Moreover, the ecofriendly approach involved in the preparation associated with the great bioactive potential of C. guianensis makes this nanoemulsion very promising for valorization of this Amazon raw material

    Rutin-functionalized multi-walled carbon nanotubes: molecular docking, physicochemistry and cytotoxicity in fibroblasts

    Get PDF
    Multi-Walled Carbon Nanotubes (MWCNT) have been functionalized with rutin through three steps (i. reaction step; ii. purification step; iii. drying step) and their physicochemical properties investigated with respect to morphological structure, thermal analysis, Fourier Transform Infrared Spectroscopy (FTIR), and cytotoxicity. The molecular docking suggested the rutin-functionalized MWCNT occurred by hydrogen bonds, which was confirmed by FTIR assays, corroborating the results obtained by thermal analyses. A tubular shape, arranged in a three-dimensional structure, could be observed. Mild cytotoxicity observed in 3T3 fibroblasts suggested a doseeffect relationship after exposure. These findings suggest the formation of aggregates of filamentous structures on the cells favoring the cell penetration.The authors acknowledge Classius Ferreira da Silva, from the Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, for the scanning electron microscopy analyses.info:eu-repo/semantics/publishedVersio

    Two groups of red giants with distinct chemical abundances in the bulge globular cluster NGC 6553 through the eyes of APOGEE

    Get PDF
    Multiple populations revealed in globular clusters (GCs) are important windows to the formation and evolution of these stellar systems. The metal-rich GCs in the Galactic bulge are an indispensable part of this picture, but the high optical extinction in this region has prevented extensive research. In this work, we use the high-resolution near-infrared (NIR) spectroscopic data from Apache Point Observatory Galactic Evolution Experiment (APOGEE) to study the chemical abundances of NGC 6553, which is one of the most metal-rich bulge GCs. We identify 10 red giants as cluster members using their positions, radial velocities, iron abundances, and NIR photometry. Our sample stars show a mean radial velocity of −0.14 ± 5.47 km s−1, and a mean [Fe/H] of −0.15 ± 0.05. We clearly separate two populations of stars in C and N in this GC for the first time. NGC 6553 is the most metal-rich GC where the multiple stellar population phenomenon is found until now. Substantial chemical variations are also found in Na, O, and Al. However, the two populations show similar Si, Ca, and iron-peak element abundances. Therefore, we infer that the CNO, NeNa, and MgAl cycles have been activated, but the MgAl cycle is too weak to show its effect on Mg. Type Ia and Type II supernovae do not seem to have significantly polluted the second generation stars. Comparing with other GC studies, NGC 6553 shows similar chemical variations as other relatively metal-rich GCs. We also confront current GC formation theories with our results, and suggest possible avenues for improvement in the models

    Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo

    Get PDF
    Polymer hydrogels have been suggested as dressing materials for the treatment of cutaneous wounds and tissue revitalization. In this work, we report the development of a hydrogel composed of natural polymers (sodium alginate and gelatin) and silver nanoparticles (AgNPs) with recognized antimicrobial activity for healing cutaneous lesions. For the development of the hydrogel, different ratios of sodium alginate and gelatin have been tested, while different concentrations of AgNO3 precursor (1.0, 2.0, and 4.0 mM) were assayed for the production of AgNPs. The obtained AgNPs exhibited a characteristic peak between 430450 nm in the ultraviolet-visible (UVVis) spectrum suggesting a spheroidal form, which was confirmed by Transmission Electron Microscopy (TEM). Fourier Transform Infra-red (FTIR) analysis suggested the formation of strong intermolecular interactions as hydrogen bonds and electrostatic attractions between polymers, showing bands at 2920, 2852, 1500, and 1640 cm1. Significant bactericidal activity was observed for the hydrogel, with a Minimum Inhibitory Concentration (MIC) of 0.50 µg/mL against Pseudomonas aeruginosa and 53.0 µg/mL against Staphylococcus aureus. AgNPs were shown to be non-cytotoxic against fibroblast cells. The in vivo studies in female Wister rats confirmed the capacity of the AgNP-loaded hydrogels to reduce the wound size compared to uncoated injuries promoting histological changes in the healing tissue over the time course of wound healing, as in earlier development and maturation of granulation tissue. The developed hydrogel with AgNPs has healing potential for clinical applications.This research received funding from the Coordenação Aperfeiçoamento de Pessoal de Nivel Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Sergipe (FAPITEC), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, #443238/2014-6, #470388/2014-5), and from the Portuguese Science and Technology Foundation (FCT) projects M-ERA-NET/0004/2015 (PAIRED) and UIDB/04469/2020 (strategic fund).info:eu-repo/semantics/publishedVersio
    corecore