184 research outputs found

    Molecular Systematic Study Of The Genus Fagonia L. In Libya

    Get PDF
    Molecular analyses of ten Fagonia species grown widely in the Libyan Desert have been carried to investigate the taxonomic relationship between them and to evaluate the genetic distances among them. To achieve our aim RAPD technique carried out through six arbitrary primers. Comparing with ladder DNA marker, the obtained data were computerized and analyzed using SYSTAT program. The studied species are F. arabica L., F. bruguieri   DC, F. cretica L., F.glutinosa Delile, F. indica Burm., F. microphylla Pomel, F. sinaica Boiss, F. schweinfurthii Hadidi, F. tenuifolia Steud. and F.thebaica Boiss. The genetic variability among the ten Fagonia species estimated using the DNA protein sequencing obtained from primer 1, indicates that F. indica and F. glutinosa are very closely related while F.cretica, F.microphylla  and F.arabica related to each other and gathered together in another group. The dendrograms of the six primers via UPGMA method according to RAPD finger printing gave two clusters with homology percentage 9%. The first one has F.microphylla and F.schweinfurthii at 50% similarity index. The second cluster divided into two sub-clusters. The first one included three Fagonia species (F.cretica; F.indica and F.glutinosa). The second sub-cluster subdivided into two other sub-clusters. The first one contained F.arabica and F.bruguieri at 50% similarity index. The other sub-cluster gathered F.sinaica and F.thebaica and, both species in genetic relationship with F.tenuifolia.Molecular analyses of ten Fagonia species grown widely in the Libyan Desert have been carried to investigate the taxonomic relationship between them and to evaluate the genetic distances among them. To achieve our aim RAPD technique carried out through six arbitrary primers. Comparing with ladder DNA marker, the obtained data were computerized and analyzed using SYSTAT program. The studied species are F. arabica L., F. bruguieri   DC, F. cretica L., F.glutinosa Delile, F. indica Burm., F. microphylla Pomel, F. sinaica Boiss, F. schweinfurthii Hadidi, F. tenuifolia Steud. and F.thebaica Boiss. The genetic variability among the ten Fagonia species estimated using the DNA protein sequencing obtained from primer 1, indicates that F. indica and F. glutinosa are very closely related while F.cretica, F.microphylla  and F.arabica related to each other and gathered together in another group. The dendrograms of the six primers via UPGMA method according to RAPD finger printing gave two clusters with homology percentage 9%. The first one has F.microphylla and F.schweinfurthii at 50% similarity index. The second cluster divided into two sub-clusters. The first one included three Fagonia species (F.cretica; F.indica and F.glutinosa). The second sub-cluster subdivided into two other sub-clusters. The first one contained F.arabica and F.bruguieri at 50% similarity index. The other sub-cluster gathered F.sinaica and F.thebaica and, both species in genetic relationship with F.tenuifolia

    Current knowledge in pathophysiology and management of Budd-Chiari syndrome and non-cirrhotic non-tumoral splanchnic vein thrombosis

    Full text link
    Budd-Chiari Syndrome (BCS) and non-cirrhotic non-tumoral portal vein thrombosis (NCPVT) are two rare disorders, with several similarities that are categorized under the term splanchnic vein thrombosis. Both disorders are frequently associated with an underlying pro-thrombotic disorder. They can cause severe portal hypertension and usually affect oung patients, negatively influencing life expectancy when the diagnosis and treatment is not done at an early stage. Yet, they have specific features that require individual considerations. The current review will focus on the available knowledge on pathophysiology, diagnosis and management of both entities. BCS is defined as the obstruction of hepatic venous outflow regardless of its causative mechanism or level of obstruction. This obstruction can be traced to the small hepatic venules up to the entrance of the inferior vein cava (IVC) into the right atrium. Hepatic outflow obstruction related to cardiac disease, pericardial disease or sinusoidal obstruction syndrome have different pathophysiological and clinical implications and are excluded from this definition. BCS is classified as primary when the obstruction originates in the vein and thrombosis is the main cause, or secondary when the vein is externally compressed (abscess, tumor). The focus of this review is on primary BCS. NCPVT refers to the presence of a thrombus in the main portal vein trunk and/or the left or right intrahepatic portal vein branches that may extend to the splenic vein and/or the superior or inferior mesenteric veins. Isolated splenic or mesenteric vein thrombosis are out of the scope of this review.Copyright © 2019. Published by Elsevier B.V

    Early Response Assessment after Intraarterial Therapy Using 3D Quantitative Tumor Enhancement Analysis

    Get PDF
    PURPOSE Liver metastases from renal cell carcinoma (RCC) are not uncommon in the course of disease. However, data about tumor response to intraarterial therapy (IAT) are scarce. This study assessed whether changes of enhancing tumor volume using quantitative European Association for the Study of the Liver (qEASL) on magnetic resonance imaging (MRI) and computed tomography (CT) can evaluate tumor response and predict overall survival (OS) early after therapy. METHODS AND MATERIALS Fourteen patients with liver metastatic RCC treated with IAT (transarterial chemoembolization: n= 9 and yttrium-90: n= 5) were retrospectively included. All patients underwent contrast-enhanced imaging (MRI: n= 10 and CT: n= 4) 3 to 4 weeks pre- and posttreatment. Response to treatment was evaluated on the arterial phase using Response Evaluation Criteria in Solid Tumors (RECIST), World Health Organization, modified RECIST, EASL, tumor volume, and qEASL. Paired t test was used to compare measurements pre- and post-IAT. Patients were stratified into responders (≥65% decrease in qEASL) and nonresponders (<65% decrease in qEASL). OS was evaluated using Kaplan-Meier curves with log-rank test and the Cox proportional hazard model. RESULTS Mean qEASL (cm3) decreased from 93.5 to 67.2 cm3 (P= .004) and mean qEASL (%) from 63.1% to 35.6% (P= .001). No significant changes were observed using other response criteria. qEASL was the only significant predictor of OS when used to stratify patients into responders and nonresponders with median OS of 31.9 versus 11.1 months (hazard ratio [HR], 0.43; 95% confidence interval [CI], 0.19-0.97; P= .042) for qEASL (cm3) and 29.9 versus 10.2 months (HR, 0.09; 95% CI, 0.01-0.74; P= .025) for qEASL (%). CONCLUSION Three-dimensional (3D) quantitative tumor analysis is a reliable predictor of OS when assessing treatment response after IAT in patients with RCC metastatic to the liver. qEASL outperforms conventional non- 3D methods and can be used as a surrogate marker for OS early after therapy

    Renal Cell Carcinoma Metastatic to the Liver: Early Response Assessment after Intraarterial Therapy Using 3D Quantitative Tumor Enhancement Analysis

    Get PDF
    AbstractPURPOSELiver metastases from renal cell carcinoma (RCC) are not uncommon in the course of disease. However, data about tumor response to intraarterial therapy (IAT) are scarce. This study assessed whether changes of enhancing tumor volume using quantitative European Association for the Study of the Liver (qEASL) on magnetic resonance imaging (MRI) and computed tomography (CT) can evaluate tumor response and predict overall survival (OS) early after therapy.METHODS AND MATERIALSFourteen patients with liver metastatic RCC treated with IAT (transarterial chemoembolization: n= 9 and yttrium-90: n= 5) were retrospectively included. All patients underwent contrast-enhanced imaging (MRI: n= 10 and CT: n= 4) 3 to 4 weeks pre- and posttreatment. Response to treatment was evaluated on the arterial phase using Response Evaluation Criteria in Solid Tumors (RECIST), World Health Organization, modified RECIST, EASL, tumor volume, and qEASL. Paired t test was used to compare measurements pre- and post-IAT. Patients were stratified into responders (≥65% decrease in qEASL) and nonresponders (<65% decrease in qEASL). OS was evaluated using Kaplan-Meier curves with log-rank test and the Cox proportional hazard model.RESULTSMean qEASL (cm3) decreased from 93.5 to 67.2 cm3 (P= .004) and mean qEASL (%) from 63.1% to 35.6% (P= .001). No significant changes were observed using other response criteria. qEASL was the only significant predictor of OS when used to stratify patients into responders and nonresponders with median OS of 31.9 versus 11.1 months (hazard ratio [HR], 0.43; 95% confidence interval [CI], 0.19-0.97; P= .042) for qEASL (cm3) and 29.9 versus 10.2 months (HR, 0.09; 95% CI, 0.01-0.74; P= .025) for qEASL (%).CONCLUSIONThree-dimensional (3D) quantitative tumor analysis is a reliable predictor of OS when assessing treatment response after IAT in patients with RCC metastatic to the liver. qEASL outperforms conventional non-3D methods and can be used as a surrogate marker for OS early after therapy

    Thermal ablation of colorectal liver metastases: a position paper by an international panel of ablation experts, the interventional oncology sans frontières meeting 2013

    Get PDF
    Objectives: Previous attempts at meta-analysis and systematic review have not provided clear recommendations for the clinical application of thermal ablation in metastatic colorectal cancer. Many authors believe that the probability of gathering randomised controlled trial (RCT) data is low. Our aim is to provide a consensus document making recommendations on the appropriate application of thermal ablation in patients with colorectal liver metastases. Methods: This consensus paper was discussed by an expert panel at The Interventional Oncology Sans Frontières 2013. A literature review was presented. Tumour characteristics, ablation technique and different clinical applications were considered and the level of consensus was documented. Results: Specific recommendations are made with regard to metastasis size, number, and location and ablation technique. Mean 31 % 5-year survival post-ablation in selected patients has resulted in acceptance of this therapy for those with technically inoperable but limited liver disease and those with limited liver reserve or co-morbidities that render them inoperable. Conclusions: In the absence of RCT data, it is our aim that this consensus document will facilitate judicious selection of the patients most likely to benefit from thermal ablation and provide a unified interventional oncological perspective for the use of this technology. Key Points: • Best results require due consideration of tumour size, number, volume and location. • Ablation technology, imaging guidance and intra-procedural imaging assessment must be optimised. • Accepted applications include inoperable disease due to tumour distribution or inadequate liver reserve. • Other current indications include concurrent co-morbidity, patient choice and the test-of-time approach. • Future applications may include resectable disease, e.g. for small solitary tumours

    Direct comparison and reproducibility of two segmentation methods for multicompartment dosimetry: round robin study on radioembolization treatment planning in hepatocellular carcinoma

    Get PDF
    Purpose: Investigate reproducibility of two segmentation methods for multicompartment dosimetry, including normal tissue absorbed dose (NTAD) and tumour absorbed dose (TAD), in hepatocellular carcinoma patients treated with yttrium-90 (90Y) glass microspheres. Methods: TARGET was a retrospective investigation in 209 patients with < 10 tumours per lobe and at least one tumour ≥ 3 cm ± portal vein thrombosis. Dosimetry was compared using two distinct segmentation methods: anatomic (CT/MRI-based) and count threshold-based on pre-procedural 99mTc-MAA SPECT. In a round robin substudy in 20 patients with ≤ 5 unilobar tumours, the inter-observer reproducibility of eight reviewers was evaluated by computing reproducibility coefficient (RDC) of volume and absorbed dose for whole liver, whole liver normal tissue, perfused normal tissue, perfused liver, total perfused tumour, and target lesion. Intra-observer reproducibility was based on second assessments in 10 patients ≥ 2 weeks later. Results: 99mTc-MAA segmentation calculated higher absorbed doses compared to anatomic segmentation (n = 209), 43.9% higher for TAD (95% limits of agreement [LoA]: − 49.0%, 306.2%) and 21.3% for NTAD (95% LoA: − 67.6%, 354.0%). For the round robin substudy (n = 20), inter-observer reproducibility was better for anatomic (RDC range: 1.17 to 3.53) than 99mTc-MAA SPECT segmentation (1.29 to 7.00) and similar between anatomic imaging modalities (CT: 1.09 to 3.56; MRI: 1.24 to 3.50). Inter-observer reproducibility was better for larger volumes. Perfused normal tissue volume RDC was 1.95 by anatomic and 3.19 by 99mTc-MAA SPECT, with corresponding absorbed dose RDC 1.46 and 1.75. Total perfused tumour volume RDC was higher, 2.92 for anatomic and 7.0 by 99mTc-MAA SPECT with corresponding absorbed dose RDC of 1.84 and 2.78. Intra-observer variability was lower for perfused NTAD (range: 14.3 to 19.7 Gy) than total perfused TAD (range: 42.8 to 121.4 Gy). Conclusion: Anatomic segmentation-based dosimetry, versus 99mTc-MAA segmentation, results in lower absorbed doses with superior reproducibility. Higher volume compartments, such as normal tissue versus tumour, exhibit improved reproducibility. Trial registration: NCT03295006

    Consensus guidelines for the definition of time-to-event end points in image-guided tumor ablation: results of the SIO and DATECAN initiative

    Get PDF
    International audienceThere is currently no consensus regarding preferred clinical outcome measures following image-guided tumor ablation or clear definitions of oncologic end points. This consensus document proposes standardized definitions for a broad range of oncologic outcome measures with recommendations on how to uniformly document, analyze, and report outcomes. The initiative was coordinated by the Society of Interventional Oncology in collaboration with the Definition for the Assessment of Time-to-Event End Points in Cancer Trials, or DATECAN, group. According to predefined criteria, based on experience with clinical trials, an international panel of 62 experts convened. Recommendations were developed using the validated three-step modified Delphi consensus method. Consensus was reached on when to assess outcomes per patient, per session, or per tumor; on starting and ending time and survival time definitions; and on time-to-event end points. Although no consensus was reached on the preferred classification system to report complications, quality of life, and health economics issues, the panel did agree on using the most recent version of a validated patient-reported outcome questionnaire. This article provides a framework of key opinion leader recommendations with the intent to facilitate a clear interpretation of results and standardize worldwide communication. Widespread adoption will improve reproducibility, allow for accurate comparisons, and avoid misinterpretations in the field of interventional oncology research. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Liddell in this issue

    The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15–39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods: Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15–39 years to define adolescents and young adults. Findings: There were 1·19 million (95% UI 1·11–1·28) incident cancer cases and 396 000 (370 000–425 000) deaths due to cancer among people aged 15–39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59·6 [54·5–65·7] per 100 000 person-years) and high-middle SDI countries (53·2 [48·8–57·9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14·2 [12·9–15·6] per 100 000 person-years) and middle SDI (13·6 [12·6–14·8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23·5 million (21·9–25·2) DALYs to the global burden of disease, of which 2·7% (1·9–3·6) came from YLDs and 97·3% (96·4–98·1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation: Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Funding: Bill &amp; Melinda Gates Foundation, American Lebanese Syrian Associated Charities, St Baldrick's Foundation, and the National Cancer Institute

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore