115 research outputs found

    -A calf-dominated mammoth age profile from the 27 kyBP stadial Krems- Wachtberg site in the middle Danube valley -in

    Get PDF
    A short rescue-excavation in 1930 at a c.15 m 2 encampment area recovered remains from at least eight individual mammoths (Mammuthus primigenius), six wolves (Canis lupus), four red foxes (Vulpes vulpes), one arctic fox (Alopex lagopus), three wolverines (Gulo gulo), and single remains from reindeer (Rangifer tarandus), red deer (Cervus elaphus), ibex (Capra ibex), and musk ox (Ovibos moschatus). The body part representation and the bone modification patterns of the species are studied, and the death age profile of the mammoth bone sample is figured. The archeological documentation of the site, the preservation state of the bones, and the evidence of delicate bone fragments support a geologically short-time generated origin of the sample with only light disturbance by carnivores. The remains of at least four calves of suckling age, as well as two subadults, and two adults, at least one bull, may be caused by the exploitation of a mammoth family group. Within the body parts of the juveniles, heads including isolated milk teeth are overrepresented. The osteological patterns of the proboscidean finds indicate the utilization of head, back, and foot parts, as well as long bone and rib internals. Cortical bone fragments were used for works and tools. By ethological analogy the death age profile pleads for a proliferating mammoth population. The second main property of the sample is the extraordinary high carnivore representation, which is over 50 % of the minimal number of individuals, and the evidence of their butchering. Under three models about the procurement strategy, the task independent model, the natural cooccurrence model, and the co-occurrence exploiting model, this last one is favoured: The Pavlovian people confronted family herd-units, using any ambush place within the multiformity of the regional landscape, and selectively brought carcass parts back to the residential camp. The prey spectrum and the multiform landscape reflect a variety of potential forage grounds. This and the postulated healthy mammoth herd structure, suggest high yield environmental conditions, and a stable supply position of the Pavlovian people. Site occupation, interpreted from the mammoth calf ages, and from the osteological patterning of the medium-sized herbivore and carnivore carcasses, was probably during the winter months. The contextual occurrence of the zoomorphous burnt clay figurines and the animal parts may reflect a non-subsistential set of human behavior

    Imaging dielectric relaxation in nanostructured polymers by frequency modulation electrostatic force microscopy

    Get PDF
    We have developed a method for imaging the temperature-frequency dependence of the dynamics of nanostructured polymer films with spatial resolution. This method provides images with dielectric compositional contrast well decoupled from topography. Using frequency-modulation electrostatic-force-microscopy, we probe the local frequency-dependent (0.1–100 Hz) dielectric response through measurement of the amplitude and phase of the force gradient in response to an oscillating applied electric field. When the phase is imaged at fixed frequency, it reveals the spatial variation in dielectric losses, i.e., the spatial variation in molecular/dipolar dynamics, with 40 nm lateral resolution. This is demonstrated by using as a model system; a phase separated polystyrene/polyvinyl-acetate (PVAc) blend. We show that nanoscale dynamic domains of PVAc are clearly identifiable in phase images as those which light-up in a band of temperature, reflecting the variations in the molecular/dipolar dynamics approaching the glass transition temperature of PVAc

    A leatherback turtle (Testudines, Dermochelyidae) from the Miocene of the Westerschelde, the Netherlands

    Get PDF
    The Westerschelde Estuary in The Netherlands is known for its rich vertebrate fossil content. In a recent trawling campaign aimed at sampling a late Miocene marine vertebrate assemblage, over 5000 specimens were retrieved, all currently stored in the Natuurhistorisch Museum Rotterdam. One specimen is a well preserved fragment of a dermochelyid sea-turtle carapace. The Westerschelde specimen is an addition to the scant hypodigm of dermochelyids from the Miocene North Sea. The carapace fragment is described and identified as Psephophorus polygonus. The various secondary marks present on the fragment are suggestive of both predatory and scavenging origin. Based on the assumption that P. polygonus had a similar carapace structure as recent D. coriacea, the minimal size of the complete carapace is estimated to have been 168 x 126 cm. Furthermore, based on the physical traits of the Westerschelde specimen and a reexamination of P. polygonus specimens, including the neotype stored at the Naturhistorisches Museum Wien (Austria), it is argued that previously assigned characteristics cannot be used as discriminative taxonomic properties of dermochelyids in general, and of P. polygonus in particular. An improved cladistic analysis on dermochelyids is performed based on previously defined and new taxonomic characters. Using this analysis it is argued that Psephophorus calvertensis is a junior synonym of P. polygonus. Hence, a new diagnosis of Psephophorus polygonus is defined. The ‘addition’ of P. calvertensis to the species P. polygonus confirms its presence on both sides of the Atlantic Ocean. Therefore, we suggest P. polygonus to have had a cosmopolitan distribution, similar to the extant species Dermochelys coriacea

    The last European varanid: demise and extinction of monitor lizards (Squamata, Varanidae) from Europe

    Get PDF
    Remains of a varanid lizard from the middle Pleistocene of the Tourkobounia 5 locality near Athens, Greece are described. The new material comprises cranial elements only (one maxilla, one dentary, and one tooth) and is attributed to Varanus, the genus to which all European Neogene varanid occurrences have been assigned. Previously, the youngest undisputed varanid from Europe had been recovered from upper Pliocene sediments. The new Greek fossils therefore constitute the youngest records of this clade from the continent. Despite being fragmentary, this new material enhances our understanding of the cranial anatomy of the last European monitor lizards and is clearly not referable to the extant Varanus griseus or Varanus niloticus, the only species that could be taken into consideration on a present-day geographic basis. However, these fossils could represent a survivor of the monitor lizards of Asian origin that inhabited Europe during the Neogene

    Evolutionary history of saber-toothed cats based on ancient mitogenomics

    Get PDF
    Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of these aspects of many other megafauna species (e.g., mammoths and cave bears), relatively few ancient-DNA studies have focused on saber-toothed cats, and they have been restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of two lineages of saber-toothed cats (Smilodon and Homotherium) in relation to living carnivores and find that the Machairodontinae form a well-supported clade that is distinct from all living felids. We present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. samples, including the only Late Pleistocene Homotherium sample from Eurasia. We confirm the identification of the unique Late Pleistocene European fossil through ancient-DNA analyses, thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium ( 18 million years) but limited diversity between the American and European Homotherium specimens. The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) Homotherium should be considered a single species, H. latidens, which was previously proposed based on morphological data

    Genetics of decayed sexual traits in a parasitoid wasp with endosymbiont-induced asexuality.

    Get PDF
    Trait decay may occur when selective pressures shift, owing to changes in environment or life style, rendering formerly adaptive traits non-functional or even maladaptive. It remains largely unknown if such decay would stem from multiple mutations with small effects or rather involve few loci with major phenotypic effects. Here, we investigate the decay of female sexual traits, and the genetic causes thereof, in a transition from haplodiploid sexual reproduction to endosymbiont-induced asexual reproduction in the parasitoid wasp Asobara japonica. We take advantage of the fact that asexual females cured of their endosymbionts produce sons instead of daughters, and that these sons can be crossed with sexual females. By combining behavioral experiments with crosses designed to introgress alleles from the asexual into the sexual genome, we found that sexual attractiveness, mating, egg fertilization and plastic adjustment of offspring sex ratio (in response to variation in local mate competition) are decayed in asexual A. japonica females. Furthermore, introgression experiments revealed that the propensity for cured asexual females to produce only sons (because of decayed sexual attractiveness, mating behavior and/or egg fertilization) is likely caused by recessive genetic effects at a single locus. Recessive effects were also found to cause decay of plastic sex-ratio adjustment under variable levels of local mate competition. Our results suggest that few recessive mutations drive decay of female sexual traits, at least in asexual species deriving from haplodiploid sexual ancestors

    Genetics of decayed sexual traits in a parasitoid wasp with endosymbiont-induced asexuality

    Get PDF
    Trait decay may occur when selective pressures shift, owing to changes in environment or life style, rendering formerly adaptive traits non-functional or even maladaptive. It remains largely unknown if such decay would stem from multiple mutations with small effects or rather involve few loci with major phenotypic effects. Here, we investigate the decay of female sexual traits, and the genetic causes thereof, in a transition from haplodiploid sexual reproduction to endosymbiont-induced asexual reproduction in the parasitoid wasp Asobara japonica. We take advantage of the fact that asexual females cured of their endosymbionts produce sons instead of daughters, and that these sons can be crossed with sexual females. By combining behavioral experiments with crosses designed to introgress alleles from the asexual into the sexual genome, we found that sexual attractiveness, mating, egg fertilization and plastic adjustment of offspring sex ratio (in response to variation in local mate competition) are decayed in asexual A. japonica females. Furthermore, introgression experiments revealed that the propensity for cured asexual females to produce only sons (because of decayed sexual attractiveness, mating behavior and/or egg fertilization) is likely caused by recessive genetic effects at a single locus. Recessive effects were also found to cause decay of plastic sex-ratio adjustment under variable levels of local mate competition. Our results suggest that few recessive mutations drive decay of female sexual traits, at least in asexual species deriving from haplodiploid sexual ancestors

    Dengue-2 Structural Proteins Associate with Human Proteins to Produce a Coagulation and Innate Immune Response Biased Interactome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue virus infection is a public health threat to hundreds of millions of individuals in the tropical regions of the globe. Although Dengue infection usually manifests itself in its mildest, though often debilitating clinical form, dengue fever, life-threatening complications commonly arise in the form of hemorrhagic shock and encephalitis. The etiological basis for the virus-induced pathology in general, and the different clinical manifestations in particular, are not well understood. We reasoned that a detailed knowledge of the global biological processes affected by virus entry into a cell might help shed new light on this long-standing problem.</p> <p>Methods</p> <p>A bacterial two-hybrid screen using DENV2 structural proteins as bait was performed, and the results were used to feed a manually curated, global dengue-human protein interaction network. Gene ontology and pathway enrichment, along with network topology and microarray meta-analysis, were used to generate hypothesis regarding dengue disease biology.</p> <p>Results</p> <p>Combining bioinformatic tools with two-hybrid technology, we screened human cDNA libraries to catalogue proteins physically interacting with the DENV2 virus structural proteins, Env, cap and PrM. We identified 31 interacting human proteins representing distinct biological processes that are closely related to the major clinical diagnostic feature of dengue infection: haemostatic imbalance. In addition, we found dengue-binding human proteins involved with additional key aspects, previously described as fundamental for virus entry into cells and the innate immune response to infection. Construction of a DENV2-human global protein interaction network revealed interesting biological properties suggested by simple network topology analysis.</p> <p>Conclusions</p> <p>Our experimental strategy revealed that dengue structural proteins interact with human protein targets involved in the maintenance of blood coagulation and innate anti-viral response processes, and predicts that the interaction of dengue proteins with a proposed human protein interaction network produces a modified biological outcome that may be behind the hallmark pathologies of dengue infection.</p

    Genetics of decayed sexual traits in a parasitoid wasp with endosymbiont-induced asexuality

    Get PDF
    Trait decay may occur when selective pressures shift, owing to changes in environment or life style, rendering formerly adaptive traits non-functional or even maladaptive. It remains largely unknown if such decay would stem from multiple mutations with small effects or rather involve few loci with major phenotypic effects. Here, we investigate the decay of female sexual traits, and the genetic causes thereof, in a transition from haplodiploid sexual reproduction to endosymbiont-induced asexual reproduction in the parasitoid wasp Asobara japonica. We take advantage of the fact that asexual females cured of their endosymbionts produce sons instead of daughters, and that these sons can be crossed with sexual females. By combining behavioral experiments with crosses designed to introgress alleles from the asexual into the sexual genome, we found that sexual attractiveness, mating, egg fertilization and plastic adjustment of offspring sex ratio (in response to variation in local mate competition) are decayed in asexual A. japonica females. Furthermore, introgression experiments revealed that the propensity for cured asexual females to produce only sons (because of decayed sexual attractiveness, mating behavior and/or egg fertilization) is likely caused by recessive genetic effects at a single locus. Recessive effects were also found to cause decay of plastic sex-ratio adjustment under variable levels of local mate competition. Our results suggest that few recessive mutations drive decay of female sexual traits, at least in asexual species deriving from haplodiploid sexual ancestors
    corecore