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Summary

Sabre-toothed cats (Machairodontinae) are among the most widely recognised representatives of the

now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution and 

extinction remain uncertain. Although ancient DNA studies have led to huge advances in our 

knowledge of these aspects of many other megafauna species (e.g. mammoths and cave bears), 

relatively few ancient DNA studies have focused on sabre-toothed cats [1–3], and they have been 

restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of

two lineages of sabre-toothed cats (Smilodon and Homotherium) in relation to living carnivores, and

find the Machairodontinae form a well-supported clade that is distinct from all living felids. We 

present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. 
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samples, including the only Late Pleistocene Homotherium sample from Eurasia [4]. We confirm 

the identification of the unique Late Pleistocene European fossil through ancient DNA analyses, 

thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than

previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. 

Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium (~18

million years), but limited diversity between the American and European Homotherium specimens. 

The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) 

Homotherium should be considered a single species, H. latidens, which was previously proposed 

based on morphological data [5,6]. 

RESULTS AND DISCUSSION 

Homotherium and Smilodon were large-bodied predators with widespread distributions. The 

Holarctic genus Homotherium has Old World origins, with Late Pleistocene forms in Eurasia 

generally assigned to H. latidens while those in North America to H. serum [7,8]. The New World 

genus Smilodon is thought to have evolved from Old World dirk-toothed cats of the genus 

Megantereon which may have dispersed into the Americas during the Pliocene (Blancan). Two Late

Pleistocene (Rancholabrean) Smilodon species are recognised, with S. fatalis confined to areas 

south of the continental ice sheets in North America, while the contemporary, larger, and more 

robust S. populator was restricted to South America. Despite their widespread occurrence, 

Homotherium and Smilodon remains are uncommon and generally fragmentary in the fossil record, 

except in rare cases, e.g. [9,10]. Homotherium in particular is generally only represented by isolated

cranial or dental elements, leading to many uncertainties about their taxonomy, demography and 

extinction dynamics. Both Homotherium and Smilodon survived in North America until the Late 

Pleistocene, and went extinct alongside many other megafauna species on the continent (e.g. 

mammoth and giant sloth [11]). In Eurasia, however, Homotherium is generally thought to have 

gone extinct much earlier, during the Middle Pleistocene around 300,000 years ago [12–15]. To 

date, there is only a single dated Late Pleistocene Homotherium fossil recovered in Europe [4]. We 

used ancient DNA techniques to retrieve and analyse genetic data from this individual, and 

compared the specimen to two North American Homotherium and one South American Smilodon 

specimen, in order to investigate the evolutionary history of the Machairodontinae, and the 

taxonomy, demography and phylogeography of Homotherium.

Evolutionary history of Machairodontinae
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Mitochondrial genome data (mitogenomes) were generated for one Smilodon and three 

Homotherium specimens using hybridization capture, and assembled using both an iterative 

mapping approach using three different mitochondrial sequences as initial reference seeds, as well 

as regular read alignment approach (for more details see STAR Methods; Figure S1; Table S2). The 

Smilodon sample was collected in Chile, and is dated to 11,335 years (carbon dates are given as 

uncalibrated 14C years; Table 1). Two Homotherium fossils were collected in the Yukon Territory 

(northwest Canada), and both proved to be beyond the limits of radiocarbon dating (>50,000 years; 

Table 1; [3]). The European Homotherium was recovered from the North Sea, and is dated to 

~28,000 years old (Table 1; [4]). The recovered mitogenomes had an average depth of 19x (7 - 

35x), resulting in partial mitogenome sequences spanning 44.5 - 92.4% of the expected sequence 

length (Table S1). The recovered Machairodontinae mitogenomes were aligned with 22 additional 

carnivoran mitogenomes retrieved from GenBank and subjected to Maximum-Likelihood (ML) and

Bayesian phylogenetic analyses (Table S3). The resulting ML phylogeny confirms the placement of 

Smilodon and Homotherium as sister lineages in the subfamily Machairodontinae with 94% 

bootstrap support (BS) and a Bayesian Posterior Probability (BPP) of 0.99, basal to all extant 

Felidae species (100% BS, 1.0 BPP; Figure 1; Figure S2). The mitogenome-based phylogenetic 

relationship between Homotherium and Smilodon data is in agreement with analyses based on 

morphological evidence [8], and shorter mitochondrial sequences [1,3]. We then used a time-

calibrated Bayesian analysis to estimate divergence times on the ML topology with multiple fossil 

calibration points (Table 2). The estimated median time to the most recent common ancestor 

(tMRCA) for all Felidae was 20 million years ago (MYA; 95% credibility interval: 18.2 –22.0 

MYA). This is in line with earlier estimates of 14.5 to 21.5 MYA [3]. The tMRCA for extant Felids 

was found to be 14.2 million years ago, also similar to other estimates (e.g. 15.3 to 17.4 MYA [16]).

The calibrated phylogeny indicates a deep divergence between Smilodon and Homotherium (18.0 

MYA; 95% credibility interval: 16.0 – 20.0 MYA, estimated sequence divergence ~11%), 

supporting an Early Miocene separation into the tribes Smilodontini and Homotherini, respectively 

(the latter is sometimes referred to as Machairodontini [17]). The oldest undisputed Homotherium 

fossils from Early Pliocene assemblages in Ukraine and Kenya suggest either a Eurasian or African 

origin of the genus, and a subsequent dispersal into America during the Late Pliocene (Blancan; 

[18,19]). Smilodon remains have only been recovered on the American continents, from the 

Miocene-Pliocene boundary to the Late Pleistocene, and have never been found in Eurasia [20]. The

deep divergence inferred from our mitogenome data between Homotherium and Smilodon is 

congruent with the proposed evolution of these genera around the Miocene-Pliocene transition on 

separate continents. Within Smilodon there are currently two recognised Late Pleistocene species: S.

populator, which has so far only been found in South America, and S. fatalis, the last surviving 
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Smilodon species of North America [8]. The Smilodon specimen investigated in this study was 

recovered in Chile and is dated to 11,335 years before present (Table 1); it thus can be assigned to 

the South American Late Pleistocene species S. populator. The tMRCA of the three Homotherium 

individuals as inferred from the Bayesian analyses is 144,800 years (95% credibility interval: 

77,076 - 215,970 years, estimated sequence divergence 0.2 - 0.04%). This divergence date is 

relatively recent, and similar to that reported for other felid species (e.g. leopards from Asia [21]).

Late Pleistocene occurrence of Homotherium in Eurasia

Our genetic analyses corroborate published radiocarbon dates and morphological descriptions, 

which together provide conclusive evidence that the specimen recovered from the North Sea 

represents the first confirmed Late Pleistocene Homotherium from Eurasia, forcing a re-evaluation 

of the traditional view of the demographic processes that preceded extinction of this iconic 

megafaunal species. Very few other Late Pleistocene Homotherium fossils have been recovered in 

Europe [22,23], and their age, origin and species identification are subject to much discussion [24–

27]. The Homotherium specimen investigated here was found on the Brown Bank region in the 

North Sea (approximately 80 km off the Dutch Coast), an area where Late Pleistocene and Early 

Holocene fossils are commonly found from species that existed in Western Eurasia [28]. 

Furthermore, the fragile state of the North Sea mandible makes it unlikely to have been transported 

from remote regions, for example through taphonomic processes. Based on morphological 

characteristics, the specimen was identified as Homotherium rather than any other Late Pleistocene 

felid genus [4]. The Late Pleistocene age of this fossil has been confirmed through six independent 

radiocarbon dates (~28,000 years old [4]), which makes it the only firmly dated Late Pleistocene 

fossil in Europe assigned to the genus Homotherium. The occurrence of Homotherium in Europe 

during the Late Pleistocene could be the result of several different demographic scenarios. The Late 

Pleistocene Homotherium population in Eurasia may have existed at low population densities, 

effectively dropping under the “fossil detection threshold”, with very few remains surviving in the 

fossil record, which has also been previously proposed as an explanation for the low abundance of 

Homotherium fossils in America [29,30]. This scenario would not be unique to Homotherium; for 

example, although there are currently only four fossils recovered from the Denisovan hominins 

from a single cave, genetic data indicates that they occupied large parts of Eurasia during the Late 

Pleistocene [31–34]. Despite its widespread Holarctic distribution during the Late Pleistocene, 

Homotherium, like other megafaunal species, proved vulnerable to environmental and/or ecological 

changes, which led to its eventual extinction. Alternatively, it is conceivable that the Homotherium 

found in the North Sea descends from a Late Pleistocene dispersal from a core population in Central
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Eurasia or Beringia, as has been suggested for other Pleistocene megafauna (e.g. mammoth [35] and

wolves [36]). Similar to extant large felids [e.g. 37], Homotherium is likely to have been a highly 

mobile taxon, and may have re-colonised Europe during the Late Pleistocene after the resident 

population went extinct in the Middle Pleistocene. This scenario is consistent with the estimated 

coalescence timing of the European and American Homotherium mitochondrial lineages (95% 

Credibility Interval: 77 - 216 Ka). 

In order to identify which of the possible demographic scenarios is applicable to Late Pleistocene 

Homotherium, additional samples have to be recovered and analysed. However, all of these 

scenarios point to a situation where Homotherium roamed at least part of the Eurasian continent for 

hundreds of millennia later than was previously believed. This situation forces a re-assessment of 

the Late Pleistocene population dynamics and timing of extinction of this large felid species. Some 

of the general attributes which threaten extant large-bodied felids [38,39], such as large body-size, 

high trophic level (i.e. hypercarnivory [40–42]), and low population densities and/or fragmented 

populations may also have placed Homotherium at risk. However, our evidence of Late Pleistocene 

survival of Homotherium in Europe suggests that these factors may not have been the sole driving 

force behind its extinction, since it survived for over 200,000 years at low or fragmented population

densities, as suggested by the scarcity of fossils. Thus, gathering additional insights into the 

population structure and extinction dynamics of Homotherium may also help explain why the 

extinction risks of extant felids are sometimes overestimated [43]. Ultimately, Homotherium was 

unable to survive the climatic and ecological changes that occurred the end of the Pleistocene, a 

time during which many other large-bodied mammals such as mammoths [35] and cave lions [44] 

also experienced severe population fluctuations and extinction. In order to gain a better 

understanding of the population dynamics of Homotherium during the Late Pleistocene and why it 

eventually went extinct, more samples will have to be recovered and analysed from Europe as well 

as Asia. In light of the morphological and genetic evidence for the Late Pleistocene occurrence of 

Homotherium in Europe, it is conceivable that some Late Pleistocene remains that are currently 

assigned to one of the more common large cat species (e.g. cave lion) could be re-identified as 

Homotherium.

Taxonomic revision of Holarctic Homotherium

Species-level identification of sabre-toothed cats has been based on geographical and/or 

morphological data, which hold a number of inherent limitations [45]. The data presented here 

allow for a direct comparison at the mitochondrial DNA level between the commonly recognised 
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Homotherium species that inhabited the North American and Eurasian continents: H. serum and H. 

latidens, respectively [8]. We found low mitogenome diversity among Late Pleistocene 

representatives of the genus, and a tMRCA of ~145,000 years. Previous studies based on short 

mitochondrial sequences from North American Homotherium have also found low levels of genetic 

diversity, despite considerable geographical (>2000 km) and temporal (>25,000 years) separation of

the fossils [1]. We were unable to compare our North Sea and North American mitogenomes with 

previously published short mitochondrial sequences from other individuals [1,3], as we did not have

complete sequence coverage for the relevant mitochondrial regions (e.g. 16S, cytB, ATP8). 

However, the very recent tMRCA (~145,000 years) for the three Homotherium mitogenomic 

sequences is also indicative of low diversity between the Homotherium sequences, particularly 

considering their geographical distance. Low intraspecific diversity in such a widespread species 

has been previously reported for other carnivores (e.g. ancient lion sequences [44]; modern wolf 

sequences [36]). We therefore compared the intraspecific diversity of the three Homotherium 

mitogenomes to the diversity between subspecies of other big cats (tiger, lion and leopard), and 

found the Homotherium sequence diversity to be lower than those for any extant felid subspecies 

(STAR methods). The low mitogenomic genetic diversity is further supported by the low genetic 

diversity measured between short mtDNAmitochondrial DNA fragments from two North American 

Homotherium [1]. This degree of genetic similarity suggests that all three Homotherium individuals 

were representatives of a single Late Pleistocene species, thus casting doubt on the validity of the 

distinct American and Eurasian Homotherium species currently recognised (H. serum and H. 

latidens, respectively). Furthermore, the European Homotherium mitochondrial sequence is nested 

within the diversity of two American Homotherium sequences in the phylogeny (Figure 1), further 

supporting the monospecificity of all Late Pleistocene Holarctic Homotherium populations.

Since the first Homotherium fossil discovery in 1824 [46], multiple Homotherium species have been

proposed. However, these have typically been based on geographical or temporal separation of 

fossils, rather than distinguishable morphological characteristics [8]. In North America, older 

(Pliocene) fossils are considered morphologically distinct from younger Pleistocene finds, and are 

thus generally separated into two species; H. ischyrus and H. serum, respectively [7,29,47]. In the 

Eurasian fossil record such distinction between older and younger forms is controversial: while 

earlier studies recognised two [48], or even three distinct Eurasian species [49], recent finds from 

Spain suggest that all Pleistocene Eurasian Homotherium fossils are more accurately grouped into a 

single, morphologically variable species, H. latidens [7]. These authors also note that the variation 
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within H. latidens is extensive enough to assign North American H. serum fossils – if they were 

found in Europe – to H. latidens [7].

The morphological overlap between North American and Eurasian Homotherium fossils has been 

regarded as evidence that all Pleistocene Homotherium can be assigned to a single, morphologically

variable species [5,6]. It has also previously been suggested, based on morphological similarities 

between two Early Pleistocene individuals from France [50] and Oregon, that these individuals 

should belong to the same species [30]. The high similarity found between mtDNAmitochondrial 

DNA fragments recovered from two North American (Yukon and Great Lakes Region) 

Homotherium fossils also indicates a very close relationship between the individuals, despite their 

considerable geographical and temporal distance [1]. Although clearly limited due to small sample 

size, the mitochondrial DNA evidence we present here further supports the hypothesis, suggested 

previously based on morphological data, that at least Late Pleistocene North American and Eurasian

Homotherium are monospecific, rather than two separate species. For reasons of priority, this taxon 

should be called H. latidens [51]; consequently, H. serum [52] is a junior synonym. 

Conclusions

In this study, we present partial mitogenome sequences from two lineages of Machairodontinae, 

Smilodon and Homotherium, and confirm the phylogenetic relationships and evolutionary history of

these iconic felids. Furthermore, the mitochondrial DNA we recovered from the North Sea 

Homotherium specimen confirms the Late Pleistocene survival of this enigmatic sabre-toothed cat 

in Eurasia. Much like the Denisovan hominins, the North Sea Homotherium represents another 

striking example of the major gaps in our knowledge of Pleistocene fauna composition on the 

Eurasian continent, and holds important clues about population and extinction dynamics of 

Pleistocene species. By applying DNA analysis on ancient samples, even a controversial find such 

as the North Sea Homotherium can be firmly identified. The Homotherium mitogenome sequences 

revealed low genetic diversity, which strongly supports the hypothesis based on morphology of a 

single, widespread Holarctic Homotherium species during the Late Pleistocene (H. latidens). This 

study highlights the importance of combining morphological and genetic information for species 

identification.
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Figure legends

Figure 1: Calibrated phylogeny for Smilodon and Homotherium

 Time calibrated mitochondrial phylogeny of the Felidae, including the sabre-toothed cat Smilodon 

and scimitar-toothed Homotherium. Node support is indicated by Bayesian Posterior Probabilities 

(see Figure S2 for RAxML phylogeny and bootstrap values). Calibrated nodes are indicated with a 

star (see also Table 2). Blue node bars indicate the 95% credibility interval of divergence times. The

lower axis shows millions of years. Homotherium artwork was provided by Binia De Cahsan. The 

image of the mandible is adapted from [4]. See also Figure S1-S2.

Table 1: Sample details of Smilodon and Homotherium

Sample details for the Smilodon and Homotherium samples included in this study. In this table, only

samples for which a (partial) mitogenome could be reconstructed are listed. All radiocarbon ages 

are given in uncalibrated years before present. See also Figure S1, Table S1-S4.

Table 2: Fossil constraint used for calibrated phylogeny

Fossil constraints and calibration priors used in the time-calibrated BEAST analysis [8,79–82]. 
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STAR methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the Lead 

Contact, Johanna L.A. Paijmans (paijmans.jla@gmail.com). 

METHOD DETAILS

Morphological description for sample YG 439.38 (North American Homotherium): Specimen YG 

439.38 from Dominion Creek, Yukon, consists of the distal three-quarters of a left humerus (Figure 

S1). The specimen is generally well preserved, except some erosion on the posterior parts of both 

epicondyles. Homotherium specimens are very rarely recovered in eastern Beringia (unglaciated 

parts of Alaska and Yukon), but their humeri can be readily distinguished from much larger, and 

more robust Panthera leo spelaea, the only other large Pleistocene felid that is also known from the 

region (Table S2). Some of the key distinguishing characteristics are (1) general slenderness of the 

humerus shaft; (2) the angle of intersection of the deltoid and medial ridges is relatively more acute;

(3) the lateral supracondylar ridge is relatively straight and sharp, while in Panthera it is slightly 

convex and more obtuse crested; (4) the relatively small entepicondylar foramen; (5) the 

entepicondylar bar is in a more anterior position; and (6) the relative prominence of the lateral 

epicondyle and weaker development of muscle scar above. The specimen compares well with 

descriptions and mensurational data from other Homotherium material from the Pleistocene of 

Yukon [53] and areas in midcontinental North America [1,9]. Morphological characteristics for 

remaining Homotherium specimens have been described elsewhere [3,4].

Laboratory procedures: All pre-PCR procedures were performed in dedicated ancient DNA 

facilities with appropriate contamination precautions in place [e.g. 54]. Experiments for samples 

YG 439.38 and ZMA20.042 were performed at the Centre for GeoGenetics, University of 

Copenhagen. Samples SP1714 and SP1007 (Table 1) were processed in ancient DNA facilities of 

the Evolutionary Adaptive Genomics group at Potsdam University. Preliminary PCR data 

generation was performed in 2008 at the Max Plank Institute for Evolutionary Anthropology, 

Leipzig (MPI EVA). 
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Preliminary PCR data: DNA was extracted from sample SP1714 in dedicated cleanlab facilities at 

the MPI EVA using a silica spin column protocol and a vacuum manifold [55]. Primer pairs (Table 

S4) were split into two pools of non-overlapping fragments. A total of 4 multiplex PCRs were set up

in 25µl reaction volumes using 5 µl template, containing: 1x AmpliTaq Gold buffer, 4 mM MgCl2, 

1 mg/ml BSA, 0.2mM each dNTP, 2U AmpliTaq Gold, and 1 µM of each primer in a pool of non-

overlapping primer pairs (even vs odd numbered primer pairs [56]). PCR cycling conditions were as

follows: initial denaturation at 94°C for 10 minutes, followed by 40 cycles of 94°C for 15 seconds, 

55°C for 30 seconds and 72°C for 15 seconds, ending with a final extension for 5 minutes at 72°C. 

After multiplex PCR, a simplex PCR was carried out for each individual primer pair using the same 

conditions as described above and 5µl of a 40-fold dilution of the respective multiplex PCR. PCR 

products were tagged and built into NGS libraries [57], and sequenced on a 454-GS20. Raw data 

were demultiplexed using a custom script and aligned to make a final consensus sequence per PCR 

product. The resulting data were used for validating and extending the captured mitogenome 

sequences for sample SP1714 generated at the University of Potsdam (described below; Table S4). 

Extractions: All pre-PCR procedures (extraction, library building) were performed in dedicated 

ancient DNA facilities at the University of Potsdam and the Centre for GeoGenetics, University of 

Copenhagen, with contamination precautions in place. For specimens YG439.38 and ZMA20.042, 

samples of cortical bone were taken from long bone element (approx. 1 cm3) using a Dremel 

powertool, reduced to powder in a Mikrodismembrator, and extracted according to the protocol 

described in Orlando et al. [58]. For the remaining Homotherium samples, DNA was extracted 

according to the protocol by Dabney et al. [59]. All procedures included negative controls that were 

processed in parallel with the samples. 

Library preparation: For specimens YG 439.38 and ZMA20.042, DNA extract and negative 

controls were built into genomic libraries using the NEB E6070 kit and a slightly modified version 

of the protocol as used by Vilstrup et al. [60]. Briefly, extract (30µl) was end-repaired and then 

passed through a MinElute column. The collected flow-through was then adapter-ligated and passed

through a QiaQuick column. Adapter fill-in reaction was then performed on the flow-through, 

before final incubation at 37°C (30 minutes) followed by inactivation overnight at -20°C. For 

libraries of specimens YG 439.38 and ZMA20.042, we amplified in a 50µl reaction volume, using 

25µl of library for 12 cycles under the following reaction conditions. Final concentrations were 1.25

U AccuPrime™ Pfx DNA Polymerase (Invitrogen), 1x AccuPrime™ Pfx reaction mix (Invitrogen), 
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0.4mg/ml BSA, 120nM primer in TE, and 120nM of a multiplexing indexing primer containing a 

unique 6 nucleotide index code (Illumina). PCR cycling conditions consisted of an initial 

denaturation step at 95°C for 2 minutes, followed by 12 cycles of 95°C denaturation for 15 seconds,

60°C annealing for 30 seconds, and 68°C extension for 30 seconds. A final extension step at 68°C 

for 7 minutes was also included. Library preparation success was checked on a 2% Agarose gel 

before purification using the QIAquick column system (Qiagen) and quantification was performed 

on an Agilent 2100 BioAnalyzer. 

For remaining Homotherium specimens, libraries were prepared according to the single-stranded 

library protocol as set out in Gansauge & Meyer [61]. The optimal cycle number for every library 

was estimated using qPCR [61]. Amplification was performed in 4 parallel reactions of 20 µl each. 

Final concentrations in the indexing PCR reaction: 0.5 U AccuPrime™ Pfx DNA Polymerase 

(Invitrogen), and 1x AccuPrime™ Pfx reaction mix (Invitrogen), 0.75 µM each of the Illumina 

indexing primers, with a unique 8 nucleotide index incorporated in the P7 primer. PCR cycling 

conditions were as follows: initial denaturation step at 95°C for 2 minutes, followed by the qPCR-

estimated number of cycles of 95°C denaturation for 15 seconds, 60°C annealing for 30 seconds, 

and 68°C extension for 60 seconds, followed by a 3 min final extension at 68°C. Libraries were 

visualised on the Agilent Tapestation 2200 and measured using Qubit 2.0 Fluorometric 

quantification.

Capture: For specimens YG 439.38 and ZMA20.042, two sets of capture experiments were 

performed. The first method used biotinylated RNA probes transcribed from fresh DNA extract 

derived from modern lion tissue by MYcroarray (Ann Arbor, MI, USA). The second method used 

previously published lion genome data [62] to identify exon coding regions and create biotinylated 

RNA baits that covered these regions. Both sets of baits were used in conjunction with MYbaits 

genome capture kit to enrich the ancient extracts for endogenous felid DNA. After capture and 

cleanup, enriched libraries were re-amplified for further sequencing using Phusion polymerase with 

primers IS5_reamp.P5 and IS6_reamp.P7 over 14 cycles [63]. The sequencing data resulted from a 

pooled product of both the whole-genome enrichment and exon capture. Thus, although the 

mitochondrial data is likely to have come from the whole-genome enrichment experiment as the 

exon capture bait set did not contain mtDNAmitochondrial DNA baits, we could not distinguish 

between the two in the resulting data. 

For Homotherium samples SP1714 and SP1007, mitogenome MYbait capture baits were designed 

from preliminary mitogenome data from sample YG 439.38, using only regions with ≥5x coverage. 

Missing or ambiguous regions were replaced by a reconstructed ancestral felid mitogenome [64]. 
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Capture was performed according to the protocol described by Li et al. [65], at a hybridisation 

temperature of 65°C. Additional European Homotherium samples were screened for endogenous 

content using low-level shotgun sequencing, but due to the low estimated endogenous content, these

samples were not used for sequence capture (Table S1).

QUANTIFICATION AND STATISTICAL ANALYSES

Bioinformatic procedures

Mitogenome assembly: For samples YG 439.38 (Homotherium) and ZMA20.042 (Smilodon), an 

iterative mitogenome assembly method was used to reconstruct the mitogenome in the absence of a 

close reference. Raw sequences were trimmed using cutadapt v1.10 for single-end data (Martin, 

2011), using a length cut-off of 25bp. Before mitogenome assembly, duplicate reads were removed 

from the fastq data using PRINSEQ-lite v0.20.4 [66]. For both YG 439.38 (Homotherium) and 

ZMA20.042 (Smilodon), MitoBIM v1.8 [67] was used to reconstruct the partial mitogenomes. 

MITObim was implemented using three different references as starting bait sequences (Felis catus 

(Genbank: FCU20753), Crocuta crocuta (Genbank: JF894377.1) and Prionodon pardicolor 

(Genbank: NC_024569.1)) with default parameters apart from adjustments to the kmer value 

(kvalue = 25) and mismatch values [following 68]. We tried different mismatch values, ranging 

from 0-8%. For both the Homotherium and Smilodon, no additional mitogenomic information was 

recovered using a mismatch value of above 3%. We therefore decided upon 3% as our mismatch 

value. MITObim output mira files were converted to sam files and then visualised using Geneious. 

For each starting bait sequence, a reference consensus sequence was constructed using a minimum 

coverage value of 10x and a base call threshold of 75%. These three sequences were then aligned 

using Mafftv7.271 and a majority rule consensus base calling was implemented to generate the final

Homotherium and Smilodon mitochondrial sequences. 

Mitogenome mapping: remaining Homotherium samples were aligned to the mitogenome assembly 

for YG439.38 (Table S1). Raw sequences were trimmed using SeqPrep (available from 

https://github.com/jstjohn/SeqPrep) for paired-end data, and cutadapt v1.10 for single-end data [69].

All reads shorter than 30 bp were discarded: a more stringent length cut-off than for samples YG 

439.38 (Homotherium) and ZMA20.042 (Smilodon) to ensure reliable read alignment. The 

Burrows-Wheeler Aligner (BWA) v0.7.8 [70] was used for read mapping, with default values for 

seed length (32 bp) and mismatch values (0.04). Samtools v1.19 [71] was used to remove reads 

with a mapping quality <Q30. Duplicates were identified according to both the 5’ and 3’-end 

mapping coordinates using MarkDuplicatesByStartEnd.jar 
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((https://github.com/dariober/Java-cafe/tree/master/MarkDupsByStartEnd). The consensus 

sequence was generated using Geneious v7.0 [72], using a minimum sequence depth of 4x and a 

75% majority rule for base calling. For sample SP1714, short mtDNAmitochondrial DNA 

sequences from earlier published work [3] and preliminary generated PCR data (Table S4) were 

compared to the mitogenome retrieved using capture, for an independent validation of parts of the 

mitogenome sequence (over 1,200 bp of the capture consensus sequence). Furthermore, regions 

where there was no coverage using the capture data could be supplemented using the PCR data 

(about 600 bp). 

Phylogenetic analysis

Alignment: Mitogenome sequences were aligned using ClustalW v2 [73] as implemented in 

Geneious v7.0. The control region, as well as any positions in the alignment that contained missing 

data, were removed. The resulting alignment (6,649 bp in length) was manually annotated in 

Geneious using the domestic cat (Genbank Acc. Nr.: FCU20753) as reference. All mitochondrial 

regions except for the control region were present in the alignment, although these were highly 

fragmented and partially incomplete due to the removal of missing data. For intraspecies 

comparison between Homotherium and other large-bodied felids, mitogenomes for tiger, lion and 

leopard subspecies were downloaded and aligned with the three Homotherium specimens using 

ClustalW v2. Alignment columns containing missing data were not considered to enable direct 

comparison of genetic distances within extant species with those estimated from partial 

Homotherium and Smilodon assemblies. The alignment contained four tiger subspecies (Panthera 

tigris altaica [GenBank: JF357973], P. t. amoyensis [GenBank: HM589215], P. t. tigris [GenBank: 

JF357968], and P. t. sumatrae [GenBank: JF357969]), two leopard subspecies (Panthera pardus 

orientalis [GenBank: KX655614], and P. p. japonensis [GenBank: KJ866876]) and two lion 

subspecies (Panthera leo leo [GenBank: KP001502] and P. l. persica [GenBank: KP001501]). The 

observed genetic distances (p-distance) was measured in MEGA v5.2 [74] to be 0.006, 0.007, 0.003 

and 0.001 for tiger, leopard, lion and Homotherium, respectively. 

Partitionfinder: An optimal set of partitions and substitution models was selected from all possible 

combinations of genes and tRNAs, considering all substitution models available in BEAST, under 

the Bayesian Information Criterion (BIC) in PartitionFinder v1.1.1 [75]. The partitionfinder analysis

used the greedy search algorithm and linked branch lengths. PartitionFinder found best support for a

five-partition scheme (BEAST xml input file available upon request). 
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RaxML: The maximum likelihood tree was calculated using RaxML-HPC v8.2.4 [76] CIPRES 

black box version on the CIPRES Science Gateway [77], with default GTR+CAT substitution 

models for each partition. RAxML rapid bootstrapping was used with 1000 replicates. The African 

palm civet (Nandinia binotata, belonging to the monotypic family Nandiniidae) was used as 

outgroup. 

BEAST: Bayesian analyses were performed in BEAST v. 1.8.2 [78], with the 5 partitions selected by

PartitionFinder. First, we tested for rate variation among lineages using a lognormal clock model on

each partition (mean 0.05, standard deviation 0.05), with a uniform prior on the mean per-lineage 

substitution rate of 0 to 20% per million years, under a Birth-Death speciation tree prior. The 

MCMC chain was run for a sufficient number of generations to achieve convergence and adequate 

posterior sampling of all parameters (ESS >200), checked using Tracer v1.5 (available from 

http://www.beast.bio.ed.ac.uk/Tracer     http://beast.community/tracer  ). For some partitions, individual

parameters of the GTR substitution model selected by PartitionFinder failed to converge, and so the 

simpler HKY model was used for these partitions in order to achieve convergence. The posterior 

sample of the ucld.stdev parameter, which describes substitution rate variation among lineages, was 

found to abut zero, thus not rejecting an absence of rate variation and justifying the use of a strict 

clock model. The analysis was rerun using a strict clock model with an uninformative uniform prior

on the mean per-lineage substitution rate of 0 to 20% per million years, for molecular dating 

analyses with fossil calibration. The fossil calibrations that were used are listed in Table 2. The 

BEAUTI-generated XML input file is available upon request. TreeAnnotator v1.8.2 was then used 

to remove the first 25% of trees as burnin and extract the Maximum Clade Credibility (MCC) tree 

with nodes scaled to the median heights recovered by the posterior sample. 

DATA AND SOFTWARE AVAILABILITY

Homotherium and Smilodon consensus sequences are available on GenBank (accession numbers: 

MF871700-MF871703). 
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Nandinia binotata
Herpestes javanicus
Crocuta crocuta
Hyaena hyaena
Genetta servalina
Viverricula indica
Prionodon pardicolor
Smilodon
North American Homotherium
North Sea Homotherium
North American Homotherium
Neofelis nebulosa
Panthera tigrus
Panthera leo
Panthera pardus
Panthera uncia
Panthera onca
Leopardus guigna
Caracal caracal
Prionailurus bengalensis
Felis catus
Puma concolor
Acinonyx jubatus
Pardofelis marmorata
Lynx lynx
Catopuma temminckii
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Sample code Species Location Age Dating facility & number Skeletal element Collection Reference

SP1007 Homotherium latidens North Sea, The Netherlands 31,300±400 Utrecht University AMS facility-10456 Mandible Rotterdam [4]

31,300±400 Utrecht University AMS facility-10999

26,900±400 Utrecht University AMS facility-10908

26,700±240 Utrecht University AMS facility-11064

28,100±220 Utrecht University AMS facility-11000

27,650±280 Utrecht University AMS facility-11065

SP1714 Homotherium latidens 60- ile, Yukon Territory, Canada >56,500 Oxford Radiocarbon Accelerator-10082 left humerus Can, Mus Nat. Ottawa, CMN46442 [3]

YG439.38 Homotherium latidens Quartz Creek, Dawson City, Yukon Territory >47,500 Stafford LLC, UCIAMS-142835 left humerus Yukon Government Collection, Whitehorse Figure S1; Table S2

ZMA20.042 Smilodon populator Ultima Esperanza, Chile 11,335±30 Stafford LLC, UCIAMS-142836 left tibia Kruimel collection, Naturalis, Leiden
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Node Fossil Fossil constraint Calibration prior References

Genetta, Viverricula Minimum 11.2M Uniform: 50M – 11.2M [79, 82]

Herpestes, Hyaena, Crocuta
hyaenid fossil: 16.4M Minimum 16.4M

Uniform: 50M – 16.4M
[79, 82]

herpestid fossil: 16.4M Minimum 16.4M [79, 82]

Minimum 28M Uniform: 50M – 28M [79, 82]

Lynx, Catopuma Minimum 5.3M Uniform: 10M – 5.3M [79, 82]

Puma, Acinonyx Acinonyx fossils: 3.8M Minimum 3.8M Uniform: 10M – 3.8M [80, 81]

Caracal, Felis, Prionailurus Caracal & Serval fossils: 3.8M Minimum 3.8M Uniform: 16M – 3.8M [81]

Neofelis, Panthera Minimum 3.8M Uniform: 16M – 3.8M [8, 81]

Panthera Minimum 3.5M Uniform: 10M – 1.5M [8]

Genetta fossil: 11.2M

Felidae, Prionodon Felidae stem fossils, Prionodon fossils

Lynx fossil: 5.3M

Oldest Panthera fossil: 3.8M

Oldest Panthera tigris fossil: 1.5M


