80 research outputs found

    Severity of current depression and remission status are associated with structural connectome alterations in major depressive disorder

    Get PDF
    Major depressive disorder (MDD) is associated to affected brain wiring. Little is known whether these changes are stable over time and hence might represent a biological predisposition, or whether these are state markers of current disease severity and recovery after a depressive episode. Human white matter network ("connectome") analysis via network science is a suitable tool to investigate the association between affected brain connectivity and MDD. This study examines structural connectome topology in 464 MDD patients (mean age: 36.6 years) and 432 healthy controls (35.6 years). MDD patients were stratified categorially by current disease status (acute vs. partial remission vs. full remission) based on DSM-IV criteria. Current symptom severity was assessed continuously via the Hamilton Depression Rating Scale (HAMD). Connectome matrices were created via a combination of T1-weighted magnetic resonance imaging (MRI) and tractography methods based on diffusion-weighted imaging. Global tract-based metrics were not found to show significant differences between disease status groups, suggesting conserved global brain connectivity in MDD. In contrast, reduced global fractional anisotropy (FA) was observed specifically in acute depressed patients compared to fully remitted patients and healthy controls. Within the MDD patients, FA in a subnetwork including frontal, temporal, insular, and parietal nodes was negatively associated with HAMD, an effect remaining when correcting for lifetime disease severity. Therefore, our findings provide new evidence of MDD to be associated with structural, yet dynamic, state-dependent connectome alterations, which covary with current disease severity and remission status after a depressive episode

    Brain structural correlates of insomnia severity in 1053 individuals with major depressive disorder : results from the ENIGMA MDD Working Group

    Get PDF
    It has been difficult to find robust brain structural correlates of the overall severity of major depressive disorder (MDD). We hypothesized that specific symptoms may better reveal correlates and investigated this for the severity of insomnia, both a key symptom and a modifiable major risk factor of MDD. Cortical thickness, surface area and subcortical volumes were assessed from T1-weighted brain magnetic resonance imaging (MRI) scans of 1053 MDD patients (age range 13-79 years) from 15 cohorts within the ENIGMA MDD Working Group. Insomnia severity was measured by summing the insomnia items of the Hamilton Depression Rating Scale (HDRS). Symptom specificity was evaluated with correlates of overall depression severity. Disease specificity was evaluated in two independent samples comprising 2108 healthy controls, and in 260 clinical controls with bipolar disorder. Results showed that MDD patients with more severe insomnia had a smaller cortical surface area, mostly driven by the right insula, left inferior frontal gyrus pars triangularis, left frontal pole, right superior parietal cortex, right medial orbitofrontal cortex, and right supramarginal gyrus. Associations were specific for insomnia severity, and were not found for overall depression severity. Associations were also specific to MDD; healthy controls and clinical controls showed differential insomnia severity association profiles. The findings indicate that MDD patients with more severe insomnia show smaller surfaces in several frontoparietal cortical areas. While explained variance remains small, symptom-specific associations could bring us closer to clues on underlying biological phenomena of MDD

    A genome-wide association study of the longitudinal course of executive functions

    Get PDF
    Executive functions are metacognitive capabilities that control and coordinate mental processes. In the transdiagnostic PsyCourse Study, comprising patients of the affective-to-psychotic spectrum and controls, we investigated the genetic basis of the time course of two core executive subfunctions: set-shifting (Trail Making Test, part B (TMT-B)) and updating (Verbal Digit Span backwards) in 1338 genotyped individuals. Time course was assessed with four measurement points, each 6 months apart. Compared to the initial assessment, executive performance improved across diagnostic groups. We performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with performance change over time by testing for SNP-by-time interactions using linear mixed models. We identified nine genome-wide significant SNPs for TMT-B in strong linkage disequilibrium with each other on chromosome 5. These were associated with decreased performance on the continuous TMT-B score across time. Variant rs150547358 had the lowest P value = 7.2 × 10(−10) with effect estimate beta = 1.16 (95% c.i.: 1.11, 1.22). Implementing data of the FOR2107 consortium (1795 individuals), we replicated these findings for the SNP rs150547358 (P value = 0.015), analyzing the difference of the two available measurement points two years apart. In the replication study, rs150547358 exhibited a similar effect estimate beta = 0.85 (95% c.i.: 0.74, 0.97). Our study demonstrates that longitudinally measured phenotypes have the potential to unmask novel associations, adding time as a dimension to the effects of genomics

    Characterisation of age and polarity at onset in bipolar disorder

    Get PDF
    Background Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. Aims To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. Method Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. Results Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. Conclusions AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    Full text link
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    Get PDF
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging

    White matter disturbances in major depressive disorder : a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group

    Get PDF
    Altres ajuts: The ENIGMA-Major Depressive Disorder working group gratefully acknowledges support from the NIH Big Data to Knowledge (BD2K) award (U54 EB020403 to PMT) and NIH grant R01 MH116147 (PMT). LS is supported by an NHMRC MRFF Career Development Fellowship (APP1140764). We wish to acknowledge the patients and control subjects that have particiaped int the study. We thank Rosa Schirmer, Elke Schreiter, Reinhold Borschke and Ines Eidner for image acquisition and data preparation, and Anna Oliynyk for quality checks. We thank Dorothee P. Auer and F. Holsboer for initiation of the RUD study. We wish to acknowledge the patients and control subjects that have particiaped int the study. We thank Rosa Schirmer, Elke Schreiter, Reinhold Borschke and Ines Eidner for image acquisition and data preparation, and Anna Oliynyk for quality checks. We thank Dorothee P. Auer and F. Holsboer for initiation of the RUD study. NESDA: The infrastructure for the NESDA study (www.nesda.nl) is funded through the Geestkracht program of the Netherlands Organisation for Health Research and Development (Zon-Mw, grant number 10-000-1002) and is supported by participating universities (VU University Medical Center, GGZ inGeest, Arkin, Leiden University Medical Center, GGZ Rivierduinen, University Medical Center Groningen) and mental health care organizations, see www.nesda.nl. M-JvT was supported by a VENI grant (NWO grant number 016.156.077). UCSF: This work was supported by the Brain and Behavior Research Foundation (formerly NARSAD) to TTY; the National Institute of Mental Health (R01MH085734 to TTY; K01MH117442 to TCH) and by the American Foundation for Suicide Prevention (PDF-1-064-13) to TCH. Stanford: This work was supported by NIMH Grants R01MH59259 and R37101495 to IHG. MS is partially supported by an award funded by the Phyllis and Jerome Lyle Rappaport Foundation. Muenster: This work was funded by the German Research Foundation (SFB-TRR58, Projects C09 and Z02 to UD) and the Interdisciplinary Center for Clinical Research (IZKF) of the medical faculty of Münster (grant Dan3/012/17 to UD). Marburg: This work was funded by the German Research Foundation (DFG, grant FOR2107 DA1151/5-1 and DA1151/5-2 to UD; KI 588/ 14-1, KI 588/14-2 to TK; KR 3822/7-1, KR 3822/7-2 to AK; JA 1890/ 7-1, JA 1890/7-2 to AJ). IMH-MDD: This work was supported by the National Healthcare Group Research Grant (SIG/15012) awarded to KS. Barcelona: This study was funded by two grants of the Fondo de Investigación Sanitaria from the Instituto de Salud Carlos III, by the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM). The author is funded through 'Miguel Servet' research contract (CP16-0020), co-financed by the European Regional Development Fund (ERDF) (2016-2019). QTIM: We thank the twins and singleton siblings who gave generously of their time to participate in the QTIM study. We also thank the many research assistants, radiographers, and IT support staff for data acquisition and DNA sample preparation. This study was funded by White matter disturbances in major depressive disorder: a coordinated analysis across 20 international. . . 1521 the National Institute of Child Health & Human Development (RO1 HD050735); National Institute of Biomedical Imaging and Bioengineering (Award 1U54EB020403-01, Subaward 56929223); National Health and Medical Research Council, Australia (Project Grants 496682, 1009064). NIH ENIGMA-BD2K U54 EB020403 (Thompson); R01 MH117601 (Jahanshad/Schmaal). Magdeburg: M.L. and M.W. are funded by SFB 779. Bipolar Family Study: This study has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013). This paper reflects only the author's views and the European Union is not liable for any use that may be made of the information contained therein. This work was also supported by a Wellcome Trust Strategic Award (104036/Z/14/Z). Minnesota Adolescent Depression Study: The study was funded by the National Institute of Mental Health (K23MH090421), the National Alliance for Research on Schizophrenia and Depression, the University of Minnesota Graduate School, the Minnesota Medical Foundation, and the Biotechnology Research Center (P41 RR008079 to the Center for Magnetic Resonance Research), University of Minnesota, and the Deborah E. Powell Center for Women's Health Seed Grant, University of Minnesota. Dublin: This study was supported by Science Foundation Ireland through a Stokes Professorhip grant to TF. MPIP: The MPIP Sample comprises patients included in the Recurrent Unipolar Depression (RUD) Case-Control study at the clinic of the Max Planck Institute of Psychiatry, Munich, German. The RUD study was supported by GlaxoSmithKline.Alterations in white matter (WM) microstructure have been implicated in the pathophysiology of major depressive disorder (MDD). However, previous findings have been inconsistent, partially due to low statistical power and the heterogeneity of depression. In the largest multi-site study to date, we examined WM anisotropy and diffusivity in 1305 MDD patients and 1602 healthy controls (age range 12-88 years) from 20 samples worldwide, which included both adults and adolescents, within the MDD Working Group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium. Processing of diffusion tensor imaging (DTI) data and statistical analyses were harmonized across sites and effects were meta-analyzed across studies. We observed subtle, but widespread, lower fractional anisotropy (FA) in adult MDD patients compared with controls in 16 out of 25 WM tracts of interest (Cohen's d between 0.12 and 0.26). The largest differences were observed in the corpus callosum and corona radiata. Widespread higher radial diffusivity (RD) was also observed (all Cohen's d between 0.12 and 0.18). Findings appeared to be driven by patients with recurrent MDD and an adult age of onset of depression. White matter microstructural differences in a smaller sample of adolescent MDD patients and controls did not survive correction for multiple testing. In this coordinated and harmonized multisite DTI study, we showed subtle, but widespread differences in WM microstructure in adult MDD, which may suggest structural disconnectivity in MDD

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    In vivo hippocampal subfield volumes in bipolar disorder—A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group

    Get PDF
    The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta‐Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1‐weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed‐effects models and mega‐analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = −0.20), cornu ammonis (CA)1 (d = −0.18), CA2/3 (d = −0.11), CA4 (d = −0.19), molecular layer (d = −0.21), granule cell layer of dentate gyrus (d = −0.21), hippocampal tail (d = −0.10), subiculum (d = −0.15), presubiculum (d = −0.18), and hippocampal amygdala transition area (d = −0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non‐users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD
    corecore