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Abstract
Alterations in white matter (WM) microstructure have been implicated in the pathophysiology of major depressive disorder
(MDD). However, previous findings have been inconsistent, partially due to low statistical power and the heterogeneity of
depression. In the largest multi-site study to date, we examined WM anisotropy and diffusivity in 1305 MDD patients and 1602
healthy controls (age range 12–88 years) from 20 samples worldwide, which included both adults and adolescents, within the
MDD Working Group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium. Processing of
diffusion tensor imaging (DTI) data and statistical analyses were harmonized across sites and effects were meta-analyzed across
studies. We observed subtle, but widespread, lower fractional anisotropy (FA) in adult MDD patients compared with controls in
16 out of 25 WM tracts of interest (Cohen’s d between 0.12 and 0.26). The largest differences were observed in the corpus
callosum and corona radiata. Widespread higher radial diffusivity (RD) was also observed (all Cohen’s d between 0.12 and
0.18). Findings appeared to be driven by patients with recurrent MDD and an adult age of onset of depression. White matter
microstructural differences in a smaller sample of adolescent MDD patients and controls did not survive correction for multiple
testing. In this coordinated and harmonized multisite DTI study, we showed subtle, but widespread differences in WM
microstructure in adult MDD, which may suggest structural disconnectivity in MDD.

Introduction

Major depressive disorder (MDD) is a debilitating and
highly prevalent psychiatric disorder, characterized by
depressed mood and loss of interest in daily activities [1].
Although MDD is one of the leading causes of disability
worldwide [2], our understanding of the pathophysiological
basis of the disorder remains incomplete. In recent years,
neuroimaging analyses have helped to characterize the
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neuroanatomical basis of MDD; however, consistent pat-
terns of brain alterations have been difficult to identify due
to limited power in previous studies and heterogeneity in
data analysis. To address this issue, the MDD working
group within the Enhancing Neuro Imaging Genetics
through Meta-Analysis (ENIGMA) consortium (http://
enigma.usc.edu/) initiated the largest coordinated meta-
analyses of brain structure in MDD to date to investigate the
robustness or consistency of neuroimaging findings across
many samples worldwide. Our recent studies revealed lower
hippocampal volume and altered cortical structure in MDD
patients [3, 4]. Lower integrity of white matter (WM) tracts
connecting these cortical and subcortical regions may
suggest a ‘disconnection-syndrome’ in MDD [5]. Identify-
ing patterns of alterations in WM in MDD could lead to the
discovery of pathogenic processes and thereby guide
development of new treatment targets for MDD; it could
also help provide ways of monitoring or predicting response
to currently available treatments.

Diffusion tensor imaging (DTI) characterizes the direc-
tionality of water diffusion in the brain and allows for the
in vivo study of WM microstructural properties that cannot
be measured with standard anatomical MRI. Fractional
anisotropy (FA) is a common measure derived from DTI
ranging from 0 to 1, where higher values typically represent
directionally constrained diffusion within the WM, likely
due to more intact myelin, and greater uniformity and
compactness of fiber bundles. MDD patients have been
reported to show lower FA, on average, in numerous WM
tracts, including callosal, association, and commissural
fibers; yet the pattern of deficits, and the degree of disrup-
tion is highly variable across studies [6–10]. Some studies
report lower FA in the uncinate fasciculus [7] and internal
capsule [8, 9], yet others did not replicate these findings [6].
Inconsistent findings across studies may be due, in part, to
limited statistical power related to small sample sizes, as
well as differences in analytical techniques between studies.
Variations in demographic (e.g. age [11]) or clinical char-
acteristics of participants (e.g. age of onset [12, 13] and
illness duration [14]) across studies may also contribute to
conflicting results in the literature as increasing age, longer
illness duration and early age of onset have been associated
with lower FA [13–15]. Of note, adolescent MDD may
show distinct patterns of WM changes compared to adult
MDD, as childhood and adolescence is a peak period for
WM maturation [16].

To date, four retrospective meta-analyses of DTI studies
have been performed in 2011 [17], 2013 [5] and 2016
[18, 19]. These have all reported lower FA in the corpus
callosum in adult MDD patients. Other meta-analytic results
included lower FA in the anterior limb of the internal
capsule [19], inferior longitudinal fasciculus, posterior

thalamic radiation [5] and the superior longitudinal fasci-
culus [17], while both higher and lower FA have been
reported in the fronto-occipital fasciculus [5, 17]. One major
limitation of this form of literature-based meta-analysis is its
dependency on published data and therefore susceptibility
to publication bias. Moreover, results of the different ret-
rospective meta-analyses highlight different WM tracts and
do not confirm findings from other meta-analyses, perhaps
as they include studies with different processing protocols
and different statistical analyses.

In the DTI project of the ENIGMA-MDD Working
Group, we aimed to address these methodological issues
and increase statistical power by initiating a worldwide
effort to perform the largest coordinated multi-cohort ana-
lysis on WM alterations in MDD to date. Standardized
protocols for image processing, quality assurance, and sta-
tistical analyses were applied using the ENIGMA-DTI
protocols for multi-site DTI harmonization [20–22], and
distributed to sites around the world. Harmonized effect-
size estimates calculated across sites were then meta-
analyzed.

Our primary goal was to identify and rank the most
robust associations between MDD diagnosis and WM
microstructure in a large sample of 1305 MDD patients and
1602 healthy controls across 20 samples from North
America, Europe, Asia, and Australia. In contrast to most
previous studies and meta-analyses that only examined FA,
we also characterized axial diffusivity (AD), which is
considered to represent a measure of axonal number, cali-
ber, and organization, radial diffusivity (RD), which may
give more insight into myelination, and mean diffusivity
(MD), often considered a measure of membrane density
[23]. Due to the continued maturation of WM tracts
throughout adolescence, we analyzed adolescent (age ≤ 21
years) and adult (age > 21 years) patients and controls
separately. Furthermore, we explored the modulating effects
of clinical characteristics of MDD including age of onset,
recurrence of depression, antidepressant use, severity of
depressive symptoms, and number of episodes.

Materials and methods

Study sample

The ENIGMA-MDD DTI Working Group consists of 20
cohorts from 11 different countries and includes DTI scans
from 1602 healthy controls and 1305 adults and adoles-
cents). Demographic and clinical characteristics for each
sample are presented in Tables 1 and 2. Diagnostic
assessment measures and exclusion criteria for every site are
presented in Supplementary Table S1. All study participants
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provided written informed consent and the local institu-
tional review boards and ethics committees approved each
included cohort study.

Image processing and analysis

Scanner and acquisition parameters for all sites are provided
in Supplementary Table S2. Preprocessing of diffusion
weighted images, including eddy current correction, echo-
planar imaging (EPI)-induced distortion correction, and
tensor fitting, were performed at each site. After tensor
estimation, DTI images were processed using the
ENIGMA-DTI protocols (see Supplemental Note 1). Pro-
tocols with image processing as well as quality control
procedures are freely available as part of the ENIGMA-DTI
webpage (http://enigma.ini.usc.edu/ongoing/dti-working-
group/) and NITRC (https://www.nitrc.org/projects/
enigma_dti/). Measures of FA, MD, RD, and AD were
obtained for 25 regions of interest (please see Supplemen-
tary Table S3 for a list of and description of the regions of
interest). In all analyses, we combined ROIs across both
hemispheres by taking the mean of the left and right
hemisphere regions weighted by the number of voxels;
as we did not hypothesize any lateralized effect of the
disorder, our primary analysis included bilaterally averaged
measures to avoid potential issues of left/right flipping
between sites.

Statistical analysis

First, differences between patients and controls in FA, MD,
AD, and RD were examined within adult (age > 21 years)
and adolescent (age ≤ 21 years) samples separately by linear
regression analysis, and Cohen’s d effect size estimates
were calculated. This was done for all 25 regions of interest.
All analyses were corrected for age and sex and linear
and nonlinear age and sex interactions (age-by-sex inter-
action, age2 and age2-by-sex interaction). To examine
whether case-control effects were regional effects beyond
a global effect, these analyses were performed again while
including average FA, MD, RD, or AD as an additional
covariate.

We further performed diagnosis-by-sex and diagnosis-
by-age interaction analyses. Case-control differences were
also examined in different age categories (10–<20 years;
20–<30 years; 30–<40 years; 40–<50 years, and 50–<60
years; please see Supplemental Note 4 and Supplemental
Tables). Separately within adult (age > 21) and adolescent
(≤21 years) samples, we performed stratified meta-analyses
to compare age of onset (adolescent onset ≤ 21 years of age,
adult onset > 21 years; in adult samples only), anti-
depressant use at the time of scanning (antidepressant users
and antidepressant non-users) and MDD stage (first andTa
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recurrent episode patients) and to investigate associations
with symptom severity (Beck Depression Inventory (BDI-
II) and the 17-item Hamilton Depression Rating Scale
(HDRS-17)) and the number of depressive episodes. For the
latter two analyses with continuous measures and interac-
tion analyses, we extracted the beta regression coefficient as
the effect size measure.

Analyses scripts are available on the ENIGMA-GitHub
(https://github.com/ENIGMA-git/). All regression models
and effect sizes were computed for each site separately and
regression outputs were then meta-analyzed across sites.

Meta-analysis

A random-effects inverse-variance weighted meta-analysis
was conducted in R (metaphor package, version 1.9–118)
to combine effect sizes from all sites. Heterogeneity
scores (I2), indicating the percentage of total variance
explained by heterogeneity of the effects alone, were
also computed for each test, with lower values indicating
lower effect size estimate variance across sites. The false
discovery rate (FDR) multiple comparisons correction was
applied to correct for the number of WM tracts. In addition,
in the supplemental tables, we show which findings survive
FDR-correction across all four diffusion measures and the
25 WM tracts (100 measures; see supplements). All repor-
ted p-values are FDR-corrected p-values.

Secondary analyses

Moderator analysis

We performed moderator analyses using meta-regression to
examine whether characteristics of individual sites
explained variation in effect sizes across sites. Methods and
results of these analyses are presented in Supplemental
Note 2.

UK Biobank

To examine whether our findings generalize to a population
study, we analyzed a large population cohort of adults (age
range: 43–78 years) from the UK Biobank (1st and 2nd
release) a large-scale population health study of adults in the
United Kingdom. 2096 individuals were identified to have
‘probable lifetime MDD’, as previously described [24],
based on hospital admissions data and self-report of
depressive symptoms. DTI measures from patients were
compared to DTI measures from 3275 controls without
mental disorders. Image acquisition and processing of UK
Biobank data is described in Supplemental Note 3. In order
to examine overlap between the UK Biobank sample and
the meta-analysis, the case-control analyses in the meta-

analysis were also performed including only subjects within
the UK Biobank age range (43–78 years).

Results

Adults

After FDR correction, significantly lower FA was observed
for adult MDD patients (N= 921; age range 22–88) com-
pared to healthy controls (N= 1265) in 16 of the 25 ROIs,
with the largest effects observed for the full WM skeleton,
followed by the anterior corona radiata (ACR), corona
radiata (CR), corpus callosum (CC), genu of the corpus
callosum (GCC), body of the corpus callosum (BCC) and
anterior limb of the internal capsule (ALIC). Significantly
lower FA was also observed in the superior fronto-occipital
fasciculus (SFO), sagittal stratum (SS), internal capsule
(IC), posterior corona radiata (PCR), superior corona
radiata (SCR), inferior fronto-occipital fasciculus (IFO),
fornix/stria terminalis (FXST), external capsule (EC),
and cingulate gyrus of the cingulum bundle (CGC)
(Fig. 1, Supplementary Table S4 and Supplementary
Fig. 1). No significant effects were observed for AD or
MD differences in adults (Tables S4 and S6 and Supple-
mentary Fig. 1). Higher RD for the adult sample was
observed across seven ROIs, including the FXST, BCC,
SCR, hippocampal part of the cingulum bundle (CGH), the
full WM skeleton, CR, and SFO (Fig. 2, Table S7 and
Supplementary Fig. 1).

Adolescents

After FDR correction, no significant differences were
observed for FA, AD, MD, or RD between adolescent
MDD patients (N= 372) and healthy controls (N= 290)
(Tables S8–11 and Supplementary Figures. 2 and 3).

Correction for average anisotropy/diffusivity

No significant differences between MDD patients and
controls were observed after correcting for average aniso-
tropy and diffusivity across the WM skeleton in the adult
samples (Tables S12–15) and adolescent samples
(Tables S16–19). These results indicate that no region
showed additional effects beyond the global effect.

Diagnosis by sex interaction

Adults

There were no significant diagnosis-by-sex interaction
effects in adult subjects (Tables S20–23).
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Adolescents

A diagnosis-by-sex interaction for adolescents was
observed for RD in the uncinate fasciculus (UNC;
Table S27), post-hoc tests showed that this was driven by
higher RD in patients compared to controls in males only
(d= 0.760, p= 0.011).

Diagnosis by age interaction

Full group

Diagnosis-by-age interaction analyses were performed
across adults and adolescents to obtain the largest age range
possible. Interaction effects were observed for FA in the
BCC, CC, FXST, GCC, SS, and average FA (Table S28),

post-hoc tests showed that case-control differences
increased with age. There were no interaction effects for
AD, MD, and RD (Tables S29–31).

First and recurrent episodes

Adults

Lower FA was observed for recurrent MDD patients (N=
645) compared to controls (N= 1053) across 15 ROIs, with
the largest effects observed in the ACR, GCC, CR, ALIC,
full WM skeleton, IC and the whole CC. Significant effects
were also observed in the BCC, SFO, SS, PCR, superior
longitudinal fasciculus (SLF), retrolenticular part of the
internal capsule (RLIC), PTR, and IFO (Table S32). No
significant effects were observed for MD or AD

Fig. 1 Cohen’s d effect sizes for
case-control differences in
fractional anisotropy, mean
diffusivity, radial diffusivity,
and axial diffusivity across
adults and adolescents
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(Tables S33 and S34). Significantly higher RD was
observed for MDD patients in the SCR (Table S35). No
significant differences were observed between first-episode
MDD patients (N= 169) and controls (N= 816) or between
first-episode MDD patients and recurrent MDD patients
(Tables S36–43).

Adolescents

No significant differences were observed between first
episode adolescent patients (N= 98) and controls (N= 130)
or between recurrent adolescents (N= 148), and controls
(N= 146) (Tables S44-55).

Age of onset

Adults

No significant differences were observed between ado-
lescent age of onset MDD (≤21 years (N= 251) and
controls (n= 869) (Tables S56–59). MDD patients with
an adult age of onset (>21years) (N= 399) had sig-
nificantly lower FA compared to controls (N= 853)
across 10 ROIs, with the largest effects observed for the
EC, SS, and the IFO. Significant effects were also
observed in the CC, GCC, CGC, PCR, CR, SLF, and the
FA across the full WM skeleton (Supplementary

Table S60). No significant differences were observed
between adult onset (N= 334) and adolescent onset MDD
(N= 197) (Tables S64–67).

Antidepressant use at the time of scanning

Adults

No differences were observed between antidepressant
users (N= 406) and controls (N= 848) (Tables S68–71).
Significantly lower FA was observed for antidepressant
non-users (N= 288) compared to controls (N= 962) in
the FXST, the entire WM skeleton, FX, CGH, SS, and EC
(Table S72). No significant effects were observed for AD
or MD (Tables S73 and S74). Antidepressant non-users
had higher RD in the FXST compared to controls
(Table S75). No differences were observed between
antidepressant users (N= 335) and non-users (N= 164)
(Tables S76–79).

Adolescents

No significant differences were observed between adoles-
cent antidepressant users (N= 128) and controls (N= 138),
antidepressant non-users (N= 188) and controls (N= 156)
or between antidepressant non-users (N= 104) and anti-
depressant users (N= 112) (Tables S80–S91).

Fig. 2 Regional overlap in case-
control differences in white
matter integrity across adults
and adolescents
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WM associations with symptom severity

Adults

No significant associations were observed between anisotropy
or diffusivity and symptom severity scores assessed with the
BDI (N= 477) or HDRS (N= 603) (Tables S92–99).

Adolescents

No significant associations were observed between aniso-
tropy or diffusivity and BDI (N= 168) or HDRS (N= 191)
scores (Tables S100–107).

Moderator analysis

Results of the moderator analyses are presented in Sup-
plemental Note 2.

UK Biobank

Significantly lower FA in the SFO was observed in patients
with probable MDD (N= 2096) compared to healthy con-
trols (N= 3275) in the UK Biobank sample (Table S108).
Higher AD in patients was observed in the SCR
(Table S109). Higher MD in patients was observed in the
ACR, ALIC, CR, SCR, and SFO (Table S110). Finally, RD
was higher in patients in the ACR, ALIC, CR, SCR, and
SFO (Table S111).

Discussion

A coordinated approach was used to perform the largest
multi-site DTI study in MDD to date. Differences in FA and
diffusivity measures (AD, RD, and MD) were examined
between depressed patients and healthy controls, as well as
associations with clinical characteristics of the disorder. We
included DTI data from 20 cohorts, including a total of
1305 patients with MDD and 1602 healthy controls.
Separate analyses were performed for adolescent and adult
MDD, and we found evidence for globally lower FA and
higher RD across the full WM skeleton in adult MDD
patients. These effects were mostly driven by patients with
recurrent episodes, patients with an adult (older than 21
years) age of onset of depression, and patients not taking
antidepressants at the time of scanning.

In adult patients with MDD, we found evidence of
subtle, but widespread lower FA in 16 out of 25 tract-based
ROIs including the corpus callosum, internal capsule,
inferior fronto-occipital fasciculus, corona radiata, cingu-
lum, fornix, superior fronto-occipital fasciculus (SFO), and
sagittal stratum. These effects appear to be global, as these

significant associations were no longer significant after
controlling for average/global FA.

The regions that most strongly contributed to the global
effect of lower FA were regions of the corona radiata and
corpus callosum. Lower FA in the CC is consistent with
previous meta-analyses of WM in MDD [5, 18, 19]. The CC
is the largest interhemispheric commissure in the human
brain [25], and connects amongst others the anterior cin-
gulate cortex and orbitofrontal cortex in both hemispheres.
These regions play an important role in mood regulation
[26], show cortical thinning in MDD [4] and show func-
tional abnormalities in relation to cognitive control, work-
ing memory and emotion processing in MDD [27–29].
Changes in FA in the CR have been observed in single site
studies of adult and geriatric depression [30–32]. This tract
is part of the limbic-thalamo-cortical circuitry, and contains
thalamic projections to cortical regions and also plays an
important role in emotion regulation [33, 34].

In adults, global lower FA in some WM tracts in MDD
was accompanied by global higher RD, yet no differences
found in MD or AD. Previous work suggests that changes
in RD reflect changes in myelination or morphology of glial
cells [35, 36]. In line with this, a prior quantitative MRI
study of individuals with MDD reported global reductions
of R1, an MRI parameter that is thought to reflect myelin
content [37]. Furthermore, previous post-mortem studies
have reported lower oligodendrocyte density in the amyg-
dala and prefrontal cortex in MDD patients [38–40] and
lower expression of genes related to oligodendrocyte
function [41]. Overall, we provided evidence that adult
MDD is associated with subtle widespread differences in
WM microstructure that are robust across many samples
worldwide.

WM abnormalities in adult MDD appear to be driven by
patients with more than one episode of MDD. Abnormal-
ities in these WM tracts may be related to cumulative effects
of stress on brain structure. Psychological stress is asso-
ciated with increased glucocorticoid release and stress-
related neuroinflammation, which have been shown to
negatively impact WM microstructure [42, 43]. Our results
suggest that exposure to multiple episodes of MDD may
have a neuroprogressive effect on WM microstructure. We
did not observe any associations between FA or diffusivity
measures and the number of MDD episodes, suggesting that
the relationship with the number of episodes may not be
linear. It is, however, also possible that WM abnormalities
in these tracts are a risk factor for an unfavorable course of
MDD or that the study is underpowered to detect effects in
first-episode patients.

WM differences were also primarily found in patients
with an adult age of onset (>21 years). The findings may be
related to age, as the mean age at the time of scanning was
higher in adults with an adult-onset compared to adults with
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an adolescent-onset depression. We speculate that depres-
sion may interact with the normal aging process, as results
of diagnosis-by-age interaction analysis showed that MDD
is associated with increased decline in overall and inter-
hemispheric FA with age. These results suggest that MDD
may be associated with accelerated brain aging, which has
been shown for regional gray matter volume [44, 45],
although longitudinal studies are required to confirm this
hypothesis. A previous study did not observe a diagnosis-
by-age interaction effect on WM, but this study was per-
formed in a smaller sample of patients and controls and may
have been underpowered to detect small effects [46].

Identifying neuroimaging biomarkers related to anti-
depressant treatment is important, as it not only increases
our understanding of the pathophysiology of MDD, but may
also reveal neural mechanisms through which anti-
depressants improve mood. In this study we observed lower
FA in the cingulum, sagittal stratum, external capsule, and
fornix in patients who were not taking antidepressant
medication at the time of scanning. No such differences
were observed between patients who were taking anti-
depressants and healthy subjects, which could suggest that
WM deficits may normalize with antidepressant use. In line
with this, selective serotonin reuptake inhibitors (SSRIs)
have previously been associated with increased myelina-
tion, plasticity and myelin repair [47]. SSRIs also increase
release of brain-derived neurotrophic factor (BDNF), a
neuroprotective protein that impacts oligodendrocytes and
increases myelination in the central nervous system [48].
However, caution is warranted when interpreting these
findings as medication effects, as we have only examined
antidepressant use at the time of scanning and do not have
data on past antidepressant use. Furthermore, the cross-
sectional nature of this study and possible confounding
effect of disease severity also limit our ability to conclude
that these findings are medication effects. While we
acknowledge these limitations, this study is the largest study
to date to examine associations between current AD use and
WM microstructure. Our findings are in line with a study by
Zeng et al. [49], which is to our knowledge the only study to
date that has examined alterations in WM between
medication-naive MDD patients and MDD patients using
antidepressants. Although their sample was small, the
authors conclude that antidepressant use normalizes WM
deficits in MDD. Ultimately, to fully elucidate the direct
effect of antidepressant use on WM microstructure, DTI
measures should be incorporated in randomized long-
itudinal clinical trials with antidepressant medication in
medication-naive MDD patients.

In secondary analyses, we ran the same analyses on a
large dataset from UK Biobank to examine how our find-
ings generalize to an adult population sample. Effect sizes
were generally lower and most significant findings in the

meta-analysis were not significant in the UK Biobank
sample. Including only subjects in the meta-analysis within
the age range of UK Biobank did not increase the con-
sistency in findings in the meta-analysis and UK Biobank
(see Tables S140–143). We speculate that this different
pattern of results across regions and in effect sizes between
the meta-analysis and UK Biobank may be related to the
fact that UK Biobank is a community cohort study (of
relatively well individuals) with a lifetime diagnosis of
MDD, while most studies in the meta-analysis have speci-
fically recruited participants with a current diagnosis MDD
and may have more severe symptoms at time of scanning.
Finally, differences in the processing of images between the
ENIGMA-DTI protocol and the UK Biobank protocol may
be important, although most regions of interest show good
agreement between protocols (please see supplements).

In adolescents with MDD (21 years or younger), dif-
ferences in WM microstructure of the corpus callosum
(i.e., lower FA and higher MD and RD) were also
observed compared to age-matched healthy controls,
however, these findings did not survive FDR-correction
for multiple testing. The effect sizes of case-control
comparisons in adolescents were comparable to adults in
the corpus callosum, but were lower in other tracts. It is
possible that the effects are smaller in adolescent MDD
compared to adult MDD, due to the shorter disease
duration and lower recurrence of MDD episodes in ado-
lescents. As the sample size in adolescent MDD was
smaller than in adult MDD, we may not have been able to
detect similar small differences in WM in adolescent
MDD as we observed in adult MDD. The effect sizes for
differences in FA in the corpus callosum were similar to
the effect sizes observed in adult MDD, suggesting that
larger studies in adolescent MDD are needed to confirm
whether subtle differences in FA of the corpus callosum
can also be detected in adolescent MDD patients.

The reported abnormalities in WM microstructure are
likely not specific to MDD, as previous work from the
ENIGMA schizophrenia working group has also revealed
lower global FA and higher RD in schizophrenia patients
compared to healthy controls [50]. The strongest effects
were observed in the same regions, namely the corona
radiata and corpus callosum, although the effect sizes
were higher in patients with schizophrenia (maximum
Cohen’s d= 0.42). WM microstructure studies are cur-
rently underway in other ENIGMA disease working
groups, allowing future comparisons across multiple
mental disorders.

We observed significant differences in adult MDD
patients in WM tracts that lead to the hippocampus,
including the fornix/stria terminalis and the hippocampal
portion of the cingulum bundle. Smaller hippocampal
volumes (on average) is one of the most consistently
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reported neuroimaging findings in the depression literature
(for meta-analyses please see [3, 51]). Similar mechanisms
may underlie both findings. Stress-related decreases in
hippocampal gliogenesis, a reduction in the number of
hippocampal oligodendrocytes or stress-related morpholo-
gical changes to hippocampal neurons (i.e. decreased den-
dritic length and number of dendritic spines), could affect
both hippocampal volume and WM microstructure [52, 53].
It is also possible, however, that hippocampal volume and
WM microstructure are independently impacted by stress-
related mechanisms including glutamate excitotoxicity,
inflammation, oxidative stress or an increase in glucocorti-
coids. Recent imaging genetics studies also suggest that a
genetic predisposition to such neuroanatomical variations
may also be related to the genetic underpinnings of mental
illness [54].

Limitations

While the sample size and use of harmonized protocols in
this multi-site study are strengths, we also acknowledge
certain limitations. First, we used a cutoff of 21 years for
adolescent and adult MDD and for categorizing adoles-
cent and adult age of onset. While this is consistent with
our previous work [3, 4], alternative definitions may affect
our findings. We also performed the case-control analysis
using a cutoff of 25 years, with adolescents being 25 years
or younger and adults older than 25 years. Results in
adults were very similar to the findings using the cutoff at
21 and there were still no significant case-control differ-
ences in adolescents. Second, analyses of effects of age
and age of onset on WM microstructure were performed at
the site-level prior to meta-analysis, and are therefore
hampered by the limited range of age and age of onset
within each site. Future studies harmonizing individual
level data across studies may allow for data to be pooled
and for the effects of age and age of onset to be examined
across the total age range across studies (12–88 years).
Third, while several limitations of TBSS have been
recognized (please see [55]), it remains the most widely
used method to examine group differences in WM
microstructure. Fourth, while DTI analysis was harmo-
nized using standardized protocols, DTI acquisition was
not harmonized, which may have affected our findings.
Still, our moderator analyses showed no effect of DTI
acquisition parameters on effect sizes. Including DTI data
that was acquired with different acquisition parameters
helps ensure that the findings are not specific to any
specific acquisition scheme. Finally, in this study we were
only able to examine antidepressant use at time of scan-
ning, but future studies may want to examine associations
between duration or (cumulative) dose of antidepressants
and WM microstructure.

Conclusion

In this first coordinated multi-site study of WM tract
integrity in MDD, we provide evidence for subtle, global
differences in FA and RD in multiple WM tracts in adult
MDD, with the strongest regional effects being observed in
tracts that have been implicated in emotion regulation.
Future studies with a larger sample of adolescents are
needed to examine whether more subtle WM alterations
already exist at this age. Our results suggest that widespread
structural dysconnectivity may play a role in the patho-
physiology of MDD and may become more pronounced
with recurrent episodes of MDD.
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