93 research outputs found

    High throughput quantitative expression screening and purification applied to recombinant disulfide-rich venom proteins produced in E. coli

    Get PDF
    Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment

    Generation of a library of carbohydrate-active enzymes for plant biomass deconstruction

    Get PDF
    Áreas de pesquisa: Biochemistry & Molecular Biology ; ChemistryIn nature, the deconstruction of plant carbohydrates is carried out by carbohydrate-active enzymes (CAZymes). A high-throughput (HTP) strategy was used to isolate and clone 1476 genes obtained from a diverse library of recombinant CAZymes covering a variety of sequence-based families, enzyme classes, and source organisms. All genes were successfully isolated by either PCR (61%) or gene synthesis (GS) (39%) and were subsequently cloned into Escherichia coli expression vectors. Most proteins (79%) were obtained at a good yield during recombinant expression. A significantly lower number (p < 0.01) of proteins from eukaryotic (57.7%) and archaeal (53.3%) origin were soluble compared to bacteria (79.7%). Genes obtained by GS gave a significantly lower number (p = 0.04) of soluble proteins while the green fluorescent protein tag improved protein solubility (p = 0.05). Finally, a relationship between the amino acid composition and protein solubility was observed. Thus, a lower percentage of non-polar and higher percentage of negatively charged amino acids in a protein may be a good predictor for higher protein solubility in E. coli. The HTP approach presented here is a powerful tool for producing recombinant CAZymes that can be used for future studies of plant cell wall degradation. Successful production and expression of soluble recombinant proteins at a high rate opens new possibilities for the high-throughput production of targets from limitless sourcesinfo:eu-repo/semantics/publishedVersio

    Ubiquitous carbohydrate binding modules decorate 936 lactococcal siphophage virions

    Get PDF
    With the availability of an increasing number of 3D structures of bacteriophage components, combined with powerful in silico predictive tools, it has become possible to decipher the structural assembly and functionality of phage adhesion devices. In the current study, we examined 113 members of the 936 group of lactococcal siphophages, and identified a number of Carbohydrate Binding Modules (CBMs) in the neck passage structure and major tail protein, on top of evolved Dit proteins, as recently reported by us. The binding ability of such CBM-containing proteins was assessed through the construction of green fluorescent protein fusion proteins and subsequent binding assays. Two CBMs, one from the phage tail and another from the neck, demonstrated definite binding to their phage-specific host. Bioinformatic analysis of the structural proteins of 936 phages reveals that they incorporate binding modules which exhibit structural homology to those found in other lactococcal phage groups and beyond, indicating that phages utilize common structural “bricks” to enhance host binding capabilities. The omnipresence of CBMs in Siphophages supports their beneficial role in the infection process, as they can be combined in various ways to form appendages with different shapes and functionalities, ensuring their success in host detection in their respective ecological niches

    The Drosophila

    Full text link

    Rewiring of RSK-PDZ Interactome by Linear Motif Phosphorylation

    Get PDF
    Phosphorylation of short linear peptide motifs is a widespread process for the dynamic regulation of protein–protein interactions. However, the global impact of phosphorylation events on the protein–protein interactome is rarely addressed. The disordered C-terminal tail of ribosomal S6 kinase 1 (RSK1) binds to PDZ domain-containing scaffold proteins, and it harbors a phosphorylatable PDZ binding motif (PBM) responsive to epidermal growth factor (EGF) stimulation. Here, we examined binding of two versions of the RSK1 PBM, either phosphorylated or unphosphorylated at position −3, to almost all (95%) of the 266 PDZ domains of the human proteome. PBM phosphorylation dramatically altered the PDZ domain-binding landscape of RSK1, by strengthening or weakening numerous interactions to various degrees. The RSK-PDZome interactome analyzed in this study reveals how linear motif-based phospho-switches convey stimulus-dependent changes in the context of related network components

    Crystal structure of the DNA-bound VapBC2 antitoxin/toxin pair from Rickettsia felis

    Get PDF
    Besides their commonly attributed role in the maintenance of low-copy number plasmids, toxin/antitoxin (TA) loci, also called ‘addiction modules’, have been found in chromosomes and associated to a number of biological functions such as: reduction of protein synthesis, gene regulation and retardation of cell growth under nutritional stress. The recent discovery of TA loci in obligatory intracellular species of the Rickettsia genus has prompted new research to establish whether they work as stress response elements or as addiction systems that might be toxic for the host cell. VapBC2 is a TA locus from R. felis, a pathogen responsible for flea-borne spotted fever in humans. The VapC2 toxin is a PIN-domain protein, whereas the antitoxin, VapB2, belongs to the family of swapped-hairpin β-barrel DNA-binding proteins. We have used a combination of biophysical and structural methods to characterize this new toxin/antitoxin pair. Our results show how VapB2 can block the VapC2 toxin. They provide a first structural description of the interaction between a swapped-hairpin β-barrel protein and DNA. Finally, these results suggest how the VapC2/VapB2 molar ratio can control the self-regulation of the TA locus transcription

    A jet model for the fast IR variability of the black hole X-ray binary GX 339-4

    Get PDF
    Using the simultaneous Infra-Red (IR) and X-ray light curves obtained by Kalamkar et al., we perform a Fourier analysis of the IR/X-ray timing correlations of the black hole X-ray binary (BHB) GX 339-4. The resulting IR vs X-ray Fourier coherence and lag spectra are similar to those obtained in previous studies of GX 339-4 using optical light curves. In particular, above 1 Hz, the lag spectrum features an approximately constant IR lag of about 100 ms. We model simultaneously the radio to IR Spectral Energy Distribution (SED), the IR Power Spectral Density (PSD), and the coherence and lag spectra using the jet internal shock model ISHEM assuming that the fluctuations of the jet Lorentz factor are driven by the accretion flow. It turns out that most of the spectral and timing features, including the 100-ms lag, are remarkably well-reproduced by this model. The 100-ms time-scale is then associated with the travel time from the accretion flow to the IR emitting zone. Our exploration of the parameter space favours a jet which is at most mildly relativistic (¯ < 3), and a linear and positive relation between the jet Lorentz factor and X-ray light curve i.e. (t) − 1∝LX(t). The presence of a strong Low-Frequency Quasi-Periodic Oscillation (LFQPO) in the IR light curve could be caused by jet precession driven by Lense–Thirring precession of the jet-emitting accretion flow. Our simulations confirm that this mechanism can produce an IR LFQPO similar to that observed in GX 339-4

    Monalysin, a Novel ß-Pore-Forming Toxin from the Drosophila Pathogen Pseudomonas entomophila, Contributes to Host Intestinal Damage and Lethality

    Get PDF
    Pseudomonas entomophila is an entomopathogenic bacterium that infects and kills Drosophila. P. entomophila pathogenicity is linked to its ability to cause irreversible damages to the Drosophila gut, preventing epithelium renewal and repair. Here we report the identification of a novel pore-forming toxin (PFT), Monalysin, which contributes to the virulence of P. entomophila against Drosophila. Our data show that Monalysin requires N-terminal cleavage to become fully active, forms oligomers in vitro, and induces pore-formation in artificial lipid membranes. The prediction of the secondary structure of the membrane-spanning domain indicates that Monalysin is a PFT of the ß-type. The expression of Monalysin is regulated by both the GacS/GacA two-component system and the Pvf regulator, two signaling systems that control P. entomophila pathogenicity. In addition, AprA, a metallo-protease secreted by P. entomophila, can induce the rapid cleavage of pro-Monalysin into its active form. Reduced cell death is observed upon infection with a mutant deficient in Monalysin production showing that Monalysin plays a role in P. entomophila ability to induce intestinal cell damages, which is consistent with its activity as a PFT. Our study together with the well-established action of Bacillus thuringiensis Cry toxins suggests that production of PFTs is a common strategy of entomopathogens to disrupt insect gut homeostasis

    ADDovenom: Thermostable Protein-Based ADDomer Nanoparticles as New Therapeutics for Snakebite Envenoming

    Get PDF
    Snakebite envenoming can be a life-threatening medical emergency that requires prompt medical intervention to neutralise the effects of venom toxins. Each year up to 138,000 people die from snakebites and threefold more victims suffer life-altering disabilities. The current treatment of snakebite relies solely on antivenom—polyclonal antibodies isolated from the plasma of hyperimmunised animals—which is associated with numerous deficiencies. The ADDovenom project seeks to deliver a novel snakebite therapy, through the use of an innovative protein-based scaffold as a next-generation antivenom. The ADDomer is a megadalton-sized, thermostable synthetic nanoparticle derived from the adenovirus penton base protein; it has 60 high-avidity binding sites to neutralise venom toxins. Here, we outline our experimental strategies to achieve this goal using state-of-the-art protein engineering, expression technology and mass spectrometry, as well as in vitro and in vivo venom neutralisation assays. We anticipate that the approaches described here will produce antivenom with unparalleled efficacy, safety and affordability
    corecore