283 research outputs found

    The transcriptome of utricle hair cell regeneration in the avian inner ear

    Get PDF
    Sensory hair cell loss is the major cause of hearing and balance disorders. Mammals are incapable of sustained hair cell regeneration, but lower vertebrates can regenerate these mechano-electrical transducers. We present the first comprehensive transcriptome (by mRNA-Seq) of hair cell regeneration in the chick utricle. We provide pathway and pattern annotations and correlate these with the phenotypic events that occur during regeneration. These patterns are surprisingly synchronous and highly punctuated. We show how these patterns are a new resource for identifying components of the hair cell transcriptome and identify 494 new putative hair-cell-specific genes and validate three of these (of three tested) by immunohistochemical staining. We describe many surprising new components and dynamic expression patterns, particularly within NOTCH signaling. For example, we show that HES7 is specifically expressed during utricle hair cell regeneration and closely parallels the expression of HES5. Likewise, the expression of ATOH1 is closely correlated with HEYL and the HLH inhibitory transcription factors ID1, ID2, and ID4. We investigate the correlation between fibroblast growth factor signaling and supporting cell proliferation and show that FGF20 inhibits supporting cell proliferation. We also present an analysis of 212 differentially expressed transcription factor genes in the regenerative time course that fall into nine distinct gene expression patterns, many of which correlate with phenotypic events during regeneration and represent attractive candidates for future analysis and manipulation of the regenerative program in sensory epithelia and other vertebrate neuroepithelia

    Electrochemical Boron-Doped Diamond Film Microcells Micromachined with Femtosecond Laser: Application to the Determination of Water Framework Directive Metals

    No full text
    Planar electrochemical microcells were micromachined in a microcrystalline boron-doped diamond (BDD) thin layer using a femtosecond laser (Photo 1). The electrochemical performances of the new laser-machined BDD microcell were assessed by differential pulse anodic stripping voltammetry (DPASV) determinations, at nM level, of the four heavy metal ions of the European Water Framework Directive (WFD): Cd(II), Ni(II), Pb(II), Hg(II). The results are compared with those of previously published BDD electrodes [1]. The calculated detection limits are 0.4 nM, 6.8 nM and 5.5 nm 2.3 nM, and the linearities go up to 35nM, 97nM, 48nM and 5nM for respectively Cd(II), Ni(II) Pb(II) and Hg(II). The detection limits meet with the environmental quality standard of the WFD for three of the four metals. It was shown that the four heavy metals could be detected simultaneously, in the concentration ratio usually measured in sewage or runoff waters

    Differences in Treatment Patterns and Outcomes of Acute Myocardial Infarction for Low- and High-Income Patients in 6 Countries

    Get PDF
    IMPORTANCE: Differences in the organization and financing of health systems may produce more or less equitable outcomes for advantaged vs disadvantaged populations. We compared treatments and outcomes of older high- and low-income patients across 6 countries. OBJECTIVE: To determine whether treatment patterns and outcomes for patients presenting with acute myocardial infarction differ for low- vs high-income individuals across 6 countries. DESIGN, SETTING, AND PARTICIPANTS: Serial cross-sectional cohort study of all adults aged 66 years or older hospitalized with acute myocardial infarction from 2013 through 2018 in the US, Canada, England, the Netherlands, Taiwan, and Israel using population-representative administrative data. EXPOSURES: Being in the top and bottom quintile of income within and across countries. MAIN OUTCOMES AND MEASURES: Thirty-day and 1-year mortality; secondary outcomes included rates of cardiac catheterization and revascularization, length of stay, and readmission rates. RESULTS: We studied 289 376 patients hospitalized with ST-segment elevation myocardial infarction (STEMI) and 843 046 hospitalized with non-STEMI (NSTEMI). Adjusted 30-day mortality generally was 1 to 3 percentage points lower for high-income patients. For instance, 30-day mortality among patients admitted with STEMI in the Netherlands was 10.2% for those with high income vs 13.1% for those with low income (difference, -2.8 percentage points [95% CI, -4.1 to -1.5]). One-year mortality differences for STEMI were even larger than 30-day mortality, with the highest difference in Israel (16.2% vs 25.3%; difference, -9.1 percentage points [95% CI, -16.7 to -1.6]). In all countries, rates of cardiac catheterization and percutaneous coronary intervention were higher among high- vs low-income populations, with absolute differences ranging from 1 to 6 percentage points (eg, 73.6% vs 67.4%; difference, 6.1 percentage points [95% CI, 1.2 to 11.0] for percutaneous intervention in England for STEMI). Rates of coronary artery bypass graft surgery for patients with STEMI in low- vs high-income strata were similar but for NSTEMI were generally 1 to 2 percentage points higher among high-income patients (eg, 12.5% vs 11.0% in the US; difference, 1.5 percentage points [95% CI, 1.3 to 1.8 ]). Thirty-day readmission rates generally also were 1 to 3 percentage points lower and hospital length of stay generally was 0.2 to 0.5 days shorter for high-income patients. CONCLUSIONS AND RELEVANCE: High-income individuals had substantially better survival and were more likely to receive lifesaving revascularization and had shorter hospital lengths of stay and fewer readmissions across almost all countries. Our results suggest that income-based disparities were present even in countries with universal health insurance and robust social safety net systems

    High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor

    Get PDF
    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structurefunction relationship of GPCRs. © 2014 Bill et al

    A Cross-Species Analysis of MicroRNAs in the Developing Avian Face

    Get PDF
    Higher vertebrates use similar genetic tools to derive very different facial features. This diversity is believed to occur through temporal, spatial and species-specific changes in gene expression within cranial neural crest (NC) cells. These contribute to the facial skeleton and contain species-specific information that drives morphological variation. A few signaling molecules and transcription factors are known to play important roles in these processes, but little is known regarding the role of micro-RNAs (miRNAs). We have identified and compared all miRNAs expressed in cranial NC cells from three avian species (chicken, duck, and quail) before and after species-specific facial distinctions occur. We identified 170 differentially expressed miRNAs. These include thirty-five novel chicken orthologs of previously described miRNAs, and six avian-specific miRNAs. Five of these avian-specific miRNAs are conserved over 120 million years of avian evolution, from ratites to galliforms, and their predicted target mRNAs include many components of Wnt signaling. Previous work indicates that mRNA gene expression in NC cells is relatively static during stages when the beak acquires species-specific morphologies. However, miRNA expression is remarkably dynamic within this timeframe, suggesting that the timing of specific developmental transitions is altered in birds with different beak shapes. We evaluated one miRNA:mRNA target pair and found that the cell cycle regulator p27KIP1 is a likely target of miR-222 in frontonasal NC cells, and that the timing of this interaction correlates with the onset of phenotypic variation. Our comparative genomic approach is the first comprehensive analysis of miRNAs in the developing facial primordial, and in species-specific facial development

    Reconstructing the Deep Population History of Central and South America

    Get PDF
    We report genome-wide ancient DNA from 49 individuals forming four parallel time transects in Belize, Brazil, the Central Andes, and the Southern Cone, each dating to at least 9,000 years ago. The common ancestral population radiated rapidly from just one of the two early branches that contributed to Native Americans today. We document two previously unappreciated streams of gene flow between North and South America. One affected the Central Andes by 4,200 years ago, while the other explains an affinity between the oldest North American genome associated with the Clovis culture and the oldest Central and South Americans from Chile, Brazil, and Belize. However, this was not the primary source for later South Americans, as the other ancient individuals derive from lineages without specific affinity to the Clovis-associated genome, suggesting a population replacement that began at least 9,000 years ago and was followed by substantial population continuity in multiple regions

    2018 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1005/thumbnail.jp

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF
    • …
    corecore