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Development/Plasticity/Repair

The Transcriptome of Utricle Hair Cell Regeneration in the
Avian Inner Ear

Yuan-Chieh Ku,1 Nicole A. Renaud,1 Rose A. Veile,1 Cynthia Helms,1 Courtney C.J. Voelker,2 Mark E. Warchol,2

and Michael Lovett1

1Department of Genetics and 2Department of Otolaryngology, Washington University School of Medicine, St Louis, Missouri 63110

Sensory hair cell loss is the major cause of hearing and balance disorders. Mammals are incapable of sustained hair cell regeneration, but
lower vertebrates can regenerate these mechano-electrical transducers. We present the first comprehensive transcriptome (by mRNA-
Seq) of hair cell regeneration in the chick utricle. We provide pathway and pattern annotations and correlate these with the phenotypic
events that occur during regeneration. These patterns are surprisingly synchronous and highly punctuated. We show how these patterns
are a new resource for identifying components of the hair cell transcriptome and identify 494 new putative hair-cell-specific genes and
validate three of these (of three tested) by immunohistochemical staining. We describe many surprising new components and dynamic
expression patterns, particularly within NOTCH signaling. For example, we show that HES7 is specifically expressed during utricle hair
cell regeneration and closely parallels the expression of HES5. Likewise, the expression of ATOH1 is closely correlated with HEYL and the
HLH inhibitory transcription factors ID1, ID2, and ID4. We investigate the correlation between fibroblast growth factor signaling and
supporting cell proliferation and show that FGF20 inhibits supporting cell proliferation. We also present an analysis of 212 differentially
expressed transcription factor genes in the regenerative time course that fall into nine distinct gene expression patterns, many of which
correlate with phenotypic events during regeneration and represent attractive candidates for future analysis and manipulation of the
regenerative program in sensory epithelia and other vertebrate neuroepithelia.

Key words: hair cells; regeneration; RNA-seq; systems biology; utricle

Introduction
Loss of sensory hair cells is the major cause of hearing and balance
disorders (Marazita et al., 1993; Blanchfield et al., 2001). Sensory
hair cells reside in sensory epithelia that transduce sound and
movement. In mammals, once these epithelia mature, they are
incapable of sustained regeneration (Forge et al., 1993; Warchol
et al., 1993); however, lower vertebrates have a robust regenera-
tive capacity in their sensory epithelia (Corwin and Cotanche,
1988; Ryals and Rubel, 1988; Warchol and Corwin, 1996). Avian
hair cell death triggers one of two outcomes in the surrounding
supporting cells. They can either convert directly into new hair
cells (Roberson et al., 2004; Duncan et al., 2006), a process called
phenotypic conversion, or they can reenter the cell cycle and
generate new hair cells and supporting cells by regenerative pro-
liferation (Girod et al., 1989; Stone and Cotanche, 1994). Within
the vertebrate ear, both the vestibular (balance) and the cochlea
(auditory) systems rely on hair cells to transduce mechanical
movements into electrical stimuli. The vestibular system is mor-

phologically conserved across diverse vertebrate species, whereas
the mammalian auditory system has evolved specialized struc-
tures not present in other vertebrates (Meyers and Corwin,
2008).

Little is known about the genetic mechanisms that regulate
regeneration in the sensory epithelia. One exception is the
NOTCH pathway, which has been investigated in both mammals
and birds during hair cell development and regeneration (Lind-
sell et al., 1996; Lanford et al., 1999; Stone and Rubel, 1999). Such
studies demonstrated that the transcription factors ATOH1 and
various HES genes play important roles in determining hair cell
and supporting cell fates via reciprocal inhibitory loops. Notably,
the upstream regulators of these transcription factors and the
downstream mechanisms that further specify a hair cell are
largely unknown.

Our group conducted the first large-scale gene expression
analysis of the regenerative process in the avian inner ear specif-
ically focused upon changes in transcription factor gene expres-
sion (Hawkins et al., 2007). Here, we present the first comprehensive
transcriptome, by RNA-Seq, of hair cell regeneration in the chick
utricle across a 7 d time course from the first stages of response to
damage through to the production of new hair cells by regenerative
proliferation. We provide a considerable amount of pathway and
pattern annotation and correlate the gene expression data with the
proliferation of supporting cells, the production of new hair cells by
phenotypic conversion, and the later production of hair cells by re-
generative proliferation. We also describe the major discernible pat-
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terns and pathways, some of which are surprising and dynamic and
show how these are a new discovery resource for accurately identi-
fying components of the hair cell transcriptome. Finally, we investi-
gate the correlation between fibroblast growth factor (FGF)
signaling and the control of supporting cell proliferation and present
a clustering analysis of gene expression changes for 212 differentially
expressed transcription factors in the regenerative time course, the
vast majority of which have never been studied in regeneration and
represent attractive candidates for future analysis and manipulation
of the regenerative program in many vertebrate systems.

Materials and Methods
Chick utricle cultures and isolation of sensory epithelia. Organotypic cul-
tures of the chick utricle (extracted from both sexes) were prepared by
previously described methods (Matsui et al., 2002). Utricles were treated
with 1 mM streptomycin for 24 h. Untreated cultures were maintained in
parallel and served as matched controls. After 24 h, all specimens were
either harvested for analysis or were rinsed and maintained in culture for
1–7 d in streptomycin-free medium and fed at 2 d intervals. The pure
sensory epithelia, consisting of only hair cells and supporting cells, were
isolated from the underlying tissues either immediately after streptomy-
cin treatment (0 h time point) or after 24 –168 h of recovery in vitro.
Utricles were rinsed and then incubated for 30 min in thermolysin (500
�g/ml at 37°C). Isolated epithelia for each time point and treatment
group were pooled and dissolved in TRIzol reagent (Invitrogen). At least
two biological samples (16 epithelia pooled from the streptomycin-
treated group and 16 from the control group) were collected for every
time point.

Immunohistochemistry. Cultured utricles were fixed for 30 min with
4% paraformaldehyde, washed with PBS, incubated for 2 h in PBS with
5% normal horse serum, and incubated overnight in primary antibodies.
Hair cells were labeled with antibodies against either otoferlin (HCS-1; a
gift from Jeffrey Corwin University of Virginia, Charlottesville, VA) or
Mysoin VIIa (1:500; Proteus). Antibodies for AP3B2, MDFI, and DNM1
were from Abcam. Specimens were rinsed with PBS and incubated for 2 h
with secondary antibodies conjugated with fluorescent markers (Alexa
Fluor 488 or 546; Invitrogen). Specimens were imaged with confocal
microscopy (LSM 700; Zeiss) and processed with Volocity software
(PerkinElmer).

Quantification of cell division and hair cell recovery. Proliferation was
assessed at 1–7 d after aminoglycoside antibiotic treatment. Cultures
received BrdU (3 �g/ml) for the final 4 h in vitro. After fixation, utricles
were processed for BrdU immunohistochemistry, an assay system that
has been well described previously (Matsui et al., 2002), and imaged by
confocal microscopy. BrdU-labeled cells were quantified from six 100 �
100 �m regions within the extrastriolar portion of each specimen. Data
were obtained from 6 –10 utricles per time point per treatment group.
Hair cell recovery was quantified using similar methods. Regenerated
hair cells were labeled with an antibody against myosin VIIa (see Immu-
nohistochemistry, above). Confocal images were obtained and hair cells
were quantified in six 100 � 100 �m extrastriolar regions per utricle.

FGF signaling and supporting cell proliferation. Cultured utricles were
treated with either FGF20 (to activate FGFR1 and/or FGFR3) or SU5402
(to inhibit FGFRs). Utricles were treated for 24 h with 1 mM streptomy-
cin, as described in Utricle culturing, above. Cultures were rinsed and
given Medium-199 supplemented with 1% FBS and containing either
FGF20 (1 �g/ml with 1 �g/ml heparin sulfate; R&D Systems) or SU5402
(30 �M; Santa Cruz Biotechnology). Control cultures received either 1
�g/ml heparin sulfate (FGF20 experiments) or 0.1% DMSO (SU5402
experiments). Each treatment group contained 10 –12 specimens.
Utricles were incubated in media for 48 h and proliferation was measured
as in Quantification of cell division, above. Statistical significance was
assessed using Student’s t test.

RNA-Seq preparation. Samples from each time point were processed
using Illumina mRNA-seq or TrueSeq preparation kits. In brief, mRNA
was selected by oligo-dT magnetic beads from 1 �g of total RNA and
fragmented. First-strand cDNA was generated using random primers.
Second-strand synthesis, end repair, addition of a single A base, and

adaptor ligation were then performed. Each RNA-seq library was DNA
sequenced using either the Illumina Genome Analyzer IIx or HiSeq 2000.
In all cases, biological replicate samples from pure sensory epithelia were
analyzed. The average correlation coefficient between biological repli-
cates was 0.9423. In some cases, we also ran technical replicates. The
average correlation coefficient between technical replicates was 0.9979.

RNA-Seq data analyses. Raw reads in FASTQ format were aligned to
the Ensembl Gallus gallus reference genome (WUGSC2.1 E66) using
Tophat v1.4.0 (Trapnell et al., 2009). The output.bam file was processed
by Partek Genomics Suite version 6.6 to assemble reads into transcripts
and estimate their abundances. A gene model dataset combining En-
sembl and National Center for Biotechnology Information annotations
was used to generate reads per kilobase of exon per million fragments
mapped (RPKMs) for known genes and potential novel transcripts. Sta-
tistical significance levels were calculated by one-way ANOVA. Biological
replicates had an average R of 94%. Reads mapped to different isoforms
of a given gene were combined together for analysis. At least one sample
across the entire time course was required to be �0.5 RPKM. At least one
time point had to have a significant fold change ( p � 0.05 and fold
change �1.8). The same filters were applied to individual time points to
produce a differentially expressed dataset. Gene lists from clustering
analysis were uploaded to g:Profiler and analyzed by gene group func-
tional profiling. Pathways that were predicted from g:Profilers database
of literature-supported interaction datasets were visualized by Cyto-
scape. All sequence data and annotations have been submitted to NCBI
Gene Expression Omnibus (GEO) and are available online.

Quantitative real-time PCR. Total RNA was isolated from a time
course of treated and control chicken sensory epithelia at all time points
and was converted to cDNA. Quantitative real-time PCR (qRT-PCR)
was performed using the ABI TaqMan Gene Expression Master Mix
(Applied Biosystems) on an ABI 7900HT real-time PCR machine. All of
the qRT-PCR assays were obtained from Integrated DNA Technologies
and were run in triplicate. The expression of 18S rRNA was used as a
normalization control. Twenty genes (including ATOH1 and HES5)
were selected for validation across every time point (in triplicate) across
a new parallel set of biological samples (a total of 660 qRT-PCR assays).
The average correlation between the fold change in qRT-PCR and RNA-
seq was 86% and in all cases the trends agreed.

Results
We used an in vitro organotypic culture system in which hair cell
regeneration is similar to that observed in vivo (Warchol, 1999,
Matsui et al., 2002). Whole utricles were placed in culture and
subjected to 24 h of aminoglycoside antibiotic treatment, which
kills �93% of the hair cell population (Warchol and Mont-
couquiol, 2010). Untreated utricles were cultured in parallel and
served as controls. After aminoglycoside antibiotic treatment, the
sensory epithelia of some specimens (along with untreated con-
trols) were removed for RNA-Seq; this is the zero time point (see
Materials and Methods). Other specimens were rinsed and cul-
tured for 1–7 d. We sampled at 24 h intervals up to 168 h. All of
our RNA-Seq data were derived from pure sensory epithelia
without any detectable stromal contamination. These sensory
epithelia consist of hair cells and supporting cells, the latter of
which act as progenitors for hair cell regeneration. The ratio of
supporting cells to hair cells is �4:1 (Goodyear et al., 1999). The
initial hair cell density in these cultures is �180/10,000 �m 2 and
drops to �12/10,000 �m 2 after antibiotic treatment. Large num-
bers of the supporting cells undergo proliferation within 96 h
after antibiotic treatment, resulting in the eventual replenish-
ment of hair cell numbers. In addition, a minority of new hair
cells are produced by direct phenotypic conversion within the
first 2–3 d after antibiotic injury. It became clear from our initial
samples that surprising changes in gene expression were occur-
ring in the 48 –72 h window of regeneration. We therefore sam-
pled at 6 h intervals across the 48 –72 h window (56, 60, and 66 h).
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Figure 1. Differentially expressed gene clusters analyzed by SOMs. Differentially expressed genes were clustered into 36 centroids by SOMs (Partek). Each x-axis indicates individual time points.
The y-axis shows the average normalized fold change (log2) for all the genes in the centroid, with the bars showing the range. The number within each centroid refers to a gene cluster referred to
in the text. The specific number of genes and gene IDs in each cluster are listed in supplemental Table 4. Some of the correlations between DAVID functional annotations and patterns are shown
within each centroid, with the following codes: AAB, amino acid biosynthesis; AAM, amino acid metabolism; AP, apoptosis; CA, channel activity; CB, calcium binding; CC, cell cycle; CM, cell migration;
CYT, cytoskeleton; DD, DNA damage; EM, extracellular matrix; ER, endoplasmic reticulum; GLY, glycosylation; HLH, helix loop helix genes; IFN, interferon responses; MIB, metal ion binding; MP,
membrane proteins; NB, nucleolus biosynthesis; ND, neural development; NOS, nuclear organelle synthesis; PAT, patterning; RB, RNA binding; RD, regulation of differentiation; SPS, sensory
perception of sound; SR, stress response; TM, transmembrane transport; and VGC, voltage gated channels.
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In all cases, at least two biological replicates were analyzed at
every time point. The Materials and Methods section include
information on data reproducibility. We conducted qRT-PCR on
RNA samples from a separate time course across all 11 time
points on 20 genes to validate the mRNA-Seq data. In all cases,
these trends agreed (data are available online).

Defining the regenerative transcriptome
We set our threshold for differentially expressed genes at �1.8-
fold and a p-value �0.05 at any one time point for treated versus
control cultures. Raw sequences have been submitted to NCBI
GEO (accession number applied for) and all annotations are
available online. We also required that the abundance level of
each transcript was �0.5 RPKM (Mortazavi et al., 2008) in any
sample. This resulted in a list of 3661 genes differentially ex-
pressed at any single time point.

Correlations between expression patterns and
functional annotations
Lists of upregulated and downregulated genes at individual time
points were uploaded to the DAVID Bioinformatics Resource 6.7
(da Huang et al., 2009) to perform gene ontology (GO) enrich-
ment analysis (data are available online in supplemental Table 9).
At early time points (unsurprisingly), sensory perception of sound
processes are depleted (�10% of genes with p-values �10�5), re-
flecting the death of hair cells. For upregulated genes, the GO terms
are enriched for cell cycle annotations from 24 to 120 h (�20% of
genes and p-values �10�5). This switch in cell cycle (on at 24 h and
off at 120 h) agrees with studies that observed mitotically regenerated
hair cells �6 d after aminoglycoside antibiotic treatment (Cotanche
et al., 1994). After 120 h, the number of differentially expressed genes
decreases by 52%, reflecting the cessation of the proliferative pro-
gram. At these later stages, GO annotations point to switches in
extracellular matrix production and glycoproteins. This coincides
with the period when mature hair cells develop from regenerative
proliferation of the supporting cells.

To identify more specific patterns, we clustered all differen-
tially expressed genes by unsupervised clustering within self-
organizing maps (SOMs; Kohonen, 1982) to identify 36 patterns
across the time course (Fig. 1). This number of distinct patterns
was arrived at empirically by deriving smaller (20 centroids) and
increasingly larger numbers of unsupervised clusters. It is a compro-
mise between deriving duplicate patterns (e.g., cell cycle patterns)
and observing discrete interesting patterns that are enriched for dif-
ferent cellular processes. For example, centroids 19, 25, and 31 in
Figure 1 are highly enriched for cell cycle programs, indicating that
this initiates at 24 h and has largely ceased by 120 h. We also con-
ducted functional annotations and network analyses on these SOM
clusters using the DAVID, g:Profiler (Reimand et al., 2011), and
Cytoscape tools (Smoot et al., 2011). Several of these functional cor-
relations are shown in Figure 1.

Correlating the time course with regenerative phenotypes
Studies of hair cell regeneration have generally used two pheno-
typic measurements: (1) supporting cell proliferation measured
by incorporation of BrdU into DNA (Gratzner, 1982) and (2) the
production of mature hair cells measured by the presence of hair-
cell-specific proteins such as myosin VIIA (Avraham et al., 1995).
We quantified these across the regenerative time course. Figure 2
shows the proliferation index and hair cell recovery values. DNA
replication (Fig. 2A) is a highly punctuated process, with a peak at
48 h followed by a steep decline. This peak contrasts with the
spectrum of cell-cycle-related transcripts (Fig. 1, top), which

number �300 different GO-annotated gene products and collec-
tively show a long plateau of expression. These transcripts only
decline in expression as a group at 96 –120 h, presumably because
the replication machinery is used to ensure complete cytokinesis.

Measuring the appearance of new hair cells by MYO7a stain-
ing is complicated by the persistence of dead (but unextruded)
hair cells within the injured sensory epithelia. There is neverthe-
less evidence from MYO7a staining (Fig. 2B) that hair cell num-
bers decline through the 48 h time point and are then replenished
by 72 h (consistent with a period of phenotypic conversion in that
time frame), followed by an �2-fold increase by 168 h (from
regenerative proliferation).

Identifying components of the hair cell transcriptome
A more refined measure of hair cell production is provided by track-
ing a panel of 32 genes that are known to mark hair cells within the
utricle sensory epithelia (these include MYO7a) in the RNA-Seq data
shown in Figure 3. All of these showed a �2-fold drop (range of
�2-fold to �16-fold) in gene expression after aminoglycoside anti-
biotic treatment, reflecting hair cell loss, and then showed various
patterns of recovery, with all showing higher expression levels at
168 h. Interestingly, many of them exhibited either a peak or plateau
of expression at �72 h, coincident with the probable onset of phe-
notypic conversion and the production of a minority of new hair
cells. The majority of these markers do not return to wild-type levels
by 168 h, which is consistent with the replenishment of �25% of
normal hair cell numbers by this time.

We used this pattern as a filter to identify new hair-cell-
specific markers. Defining the hair cell transcriptome remains
a challenge. At present, only a small proportion of the hair cell
transcriptome has been identified. For example, various array-

Figure 2. Phenotypic measurements across the regenerative time course. A, DNA replication
in supporting cells was measured by a BrdU incorporation assay. The x-axis indicates individual
time points. The y-axis shows the mean number of BrdU-labeled cells per 10,000 �m 2 � SD in
control and streptomycin-treated organotypic cultures. B, The number of mature hair cells was
quantified by measuring MYO7a-labeled cells. Chicken utricle sensory epithelia organotypic
cultures were treated with streptomycin and immunohistochemically labeled for MYO7a to
detect mature hair cells. The x-axis indicates individual time points. The y-axis shows the mean
number of hair cells per 10,000 �m 2 � SD.
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based methods (McDermott et al., 2007; Hertzano et al., 2011;
Sinkkonen et al., 2011) and proteomic studies (Herget et al.,
2013; Shin et al., 2013) have identified a few hundred hair cell
markers. Therefore, we implemented a filter on the entire list
of 3661 genes that required a �2-fold expression drop at 0 –24
h and a relative recovery by 168 h. This resulted in a list of 526
genes (some examples are shown in Table 1), within which
were our 32 hair cell “sentinel” genes. We then derived 25
SOM clusters from this set (Fig. 4). All of these clusters showed
the same trends at the beginning and end of the time course,
but there were reproducible fluctuations at 48 –72 h, which is
consistent with phenotypic conversion of supporting cells to
hair cells. This interpretation is supported by previous studies

showing that phenotypic conversion oc-
curs at �3 d after antibiotic removal
(Roberson et al., 2004) and by our mea-
surements of MYO7a protein.

To determine whether our filtered set
was indeed enriched for bona fide hair-
cell-specific genes, we chose three with
available antibodies for validation by im-
munohistochemistry. The first of these,
DNM1, encodes a member of the dy-
namin subfamily of GTP-binding pro-
teins. It has been implicated in signal
transduction and vesicle trafficking (Sever,
2002; Wiejak and Wyroba, 2002). DNM1
colocalized with MYO7a within all hair
cells (Fig. 5A), suggesting that it may be a
part of the stereocilia bundle. The second
gene, AP3B2, encodes a subunit of the
adapter protein complex 3 and plays a role
in neurotransmitter release (Newman et
al., 1995; Faúndez et al., 1998). AP3B2 was
specifically expressed in the hair cell cyto-
plasm (Fig. 5B) and at similar levels across
all hair cells. The third gene was MDFI,
which encodes a MyoD family inhibitor.

This transcription factor negatively regulates other myogenic
family proteins, interacts with Axin, and regulates the JNK and
WNT pathways (Kusano and Raab-Traub, 2002). Approximately
90% of utricle hair cells were labeled for MDFI (Fig. 5C), but the
intensity of nuclear staining varied, with �33% being intensely
stained.

We conclude that the 494 filtered genes are enriched for new
hair cell markers. Furthermore, in addition to MDFI, an addi-
tional 13 transcription factor genes are present in our putative
hair cell clusters. These are noteworthy because so few hair-cell-
specific transcription factors have been previously described. Of
the 14 transcription factor genes listed in Table 2, three are

Figure 3. Expression profiles of 32 known hair cell markers. The x-axis indicates individual time points. The y-axis shows the fold change of streptomycin-treated versus control samples on a log2

scale. These sentinel genes are significantly downregulated at the 0 and 24 h time points and showed a recovery trend toward the end of the time course.

Figure 4. SOMs of potential hair cell markers. Genes that passed the filters for potential hair cell markers (downregulated
�2-fold at 0 –24 h and a recovery trend by the 168 h time point) were clustered into 25 groups by SOMs (Partek). The x-axis of each
group indicates individual time points. The y-axis shows the normalized fold change.
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known hair-cell-specific transcription factors (POU4F3, GFI1
and LHX3), one is the MDFI gene we validated, and the remain-
ing 10 are new candidates for further investigation of hair cell
gene regulation. It is worth noting that our new putative hair cell
markers, unsurprisingly, have little overlap with the few hundred
described in the various array-based and proteomic-based stud-
ies cited above.

Network analysis of the entire 526 putative hair-cell-specific
genes provides independent evidence for a proportion of them
interacting. Figure 6 shows one part of this overall g:Profiler
(Reimand et al., 2011)-predicted hair cell network in which 94 of
the detectable genes in the regenerative transcriptome are linked

within a network (supported by literature citations to be found
within the g:Profiler database) that includes one known hair cell
marker (KCNA2), one of our new validated markers (DNM1),
and 13 of our putative new hair-cell-specific markers. Therefore,
in other cell systems there is independent evidence that these gene
products directly interact.

Table 1. Examples of putative hair-cell-specific genes identified in this study

Gene Description

BSN Bassoon (presynaptic cytomatrix protein)
CAB39L Calcium binding protein 39-like
CACNA1B Calcium channel, voltage-dependent, N type, alpha 1B subunit
CADM2 Cell adhesion molecule 2
CAPSL Calcyphosine-like
CASQ2 Calsequestrin 2 (cardiac muscle)
GPR143 G protein-coupled receptor 143
GPR149 G protein-coupled receptor 149
GPR98 G protein-coupled receptor 98
KCNA1 Potassium voltage-gated channel, shaker-related subfamily, member 1
KCNA3 Potassium voltage-gated channel, shaker-related subfamily, member 3
KCNA4 Potassium voltage-gated channel, shaker-related subfamily, member 4
KCNAB1 Potassium voltage-gated channel, shaker-related subfamily, beta member 1
KCNAB2 Potassium voltage-gated channel, shaker-related subfamily, beta member 2
KCNH6 Potassium voltage-gated channel, subfamily H (eag-related), member 6
KCNJ2 Potassium inwardly-rectifying channel, subfamily J, member 2
KCNS2 Potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2
KCNU1 Potassium channel, subfamily U, member 1
MYBPC1 Myosin binding protein C, slow type
MYH7B Myosin, heavy chain 7B, cardiac muscle, beta
MYLK4 Myosin light chain kinase family, member 4
MYO18B Myosin XVIIIB
MYO1H Myosin IH
MYO3A Myosin IIIA
MYO3B Myosin IIIB
PCDH20 Protocadherin 20
PCDH8 Protocadherin 8
PCDH9 Protocadherin 9
PCLO Piccolo (presynaptic cytomatrix protein)
PCP4 Purkinje cell protein 4
SLITRK4 SLIT and NTRK-like family, member 4
SMPX Small muscle protein, X-linked
SNTN Sentan, cilia apical structure protein
SPHKAP SPHK1 interactor, AKAP domain containing
SPINK4 Serine peptidase inhibitor, Kazal type 4
SPOCK3 Sparc/osteonectin, cwcv and kazal-like domains proteoglycan
SPRY3 Sprouty homolog 3 (Drosophila)
SV2B Synaptic vesicle glycoprotein 2B
SYN3 Synapsin III
SYNC Syncoilin, intermediate filament protein
SYT10 Synaptotagmin X
TESC Tescalcin
TM4SF18 Transmembrane 4 L six family member 18
TMC5 Transmembrane channel-like 5
TMCC2 Transmembrane and coiled-coil domain family 2
TMEM117 Transmembrane protein 117
TMEM151B Transmembrane protein 151B
TMIGD1 Transmembrane and immunoglobulin domain containing 1
TMPRSS7 Transmembrane protease, serine 7
TMPRSS9 Transmembrane protease, serine 9

Fifty examples of putative new hair-cell-specific markers are listed from the overall list of 494 genes (available
online) identified by our pattern and cluster analysis.

Figure 5. Immunohistochemical staining of novel hair cell markers. Chicken utricles were
labeled with antibodies to known hair markers (MYO7a or otoferlin) and to potential novel hair
cell markers identified in the present study. Scale bar, 16 �m. A, DNM1 (green) and MYO7a (red)
are colocalized within all hair cells and are expressed at similar levels. B, Hair cells are labeled for
otoferlin (green). AP3B2 (red) is expressed homogeneously within the cytoplasm of hair cells. C,
MYO7a (green) labels hair cells and MDFI (red) labels the nuclei of a subpopulation of hair cells
at various intensity levels. The images show the apical surface of the sensory epithelium with
supporting cells filling the gaps between the labeled hair cells.
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Components of known pathways and processes within the
differentially expressed genes
We next extracted components of known and interesting signal-
ing pathways/gene families from the overall dataset. We extracted
data for 47 pathways/gene families that have been implicated in
hair cell development or regeneration (data are available online).
Here, as examples of the rich information content in these data,
we highlight observations on just two of these pathways that play
key roles in sensory epithelia biology: NOTCH (Lanford et al.,
1999; Stone and Rubel, 1999) and FGF (Alvarez et al., 2003)
signaling.

NOTCH pathway
Our data include significant alterations in the expression of 25
components of NOTCH signaling. One of these is ATOH1. Ele-
vated levels of ATOH1 are associated with hair cell differentiation
and initiate a process of lateral inhibition in which ATOH1 re-
presses HES genes. Elevated ATOH1 also leads to enhanced levels
of Delta and Jagged. These bind to NOTCH receptors on adjoin-
ing cells. Processing of NOTCH then leads to the expression of
various HES transcription factor genes that repress ATOH1 ex-
pression within these neighboring cells and direct them toward a
supporting cell fate (Morrison et al., 1999; Zine et al., 2001).
Previous studies have suggested that the major HES paralogs
downstream of NOTCH signaling in the utricle are HES1 and
HES5 (Heitzler et al., 1996; Lanford et al., 2000). HES1 does not
show significant changes in gene expression in our dataset, al-
though it is detectably expressed. However, HES5 is abundantly
expressed and dynamically regulated during avian utricle regen-
eration. Notably, the expression of HES5 was sharply reduced
immediately after ototoxic injury. This observation, combined
with high levels of NOTCH expression, suggests that NOTCH
signaling is tonically active in the normal utricle and that this is
interrupted by hair cell death. We also noted a dip in HES5 ex-
pression in the 24 –72 h interval in our original time course (Fig.
7A). Therefore, we investigated this in more detail at 6 h intervals
(54, 60, and 66 h; Fig. 7B). HES5 expression dramatically in-
creases across the time course and appears to do so in an oscilla-
tory manner. Some HES genes are known to act within natural
oscillatory networks (Bessho et al., 2001; Hirata et al., 2002).
HES5 expression appears to drop within the 48 –72 h interval.
This corresponds to the time frame for phenotypic conversion

Table 2. Examples of significant transcription factor gene clusters

Description Gene

Hair-cell-specific transcription factors
Ankyrin repeat domain 5 ANKRD5
D4, zinc and double PHD fingers, family 3 DPF3
Dorsal root ganglia homeobox DRGX
Forkhead box F1 FOXF1
Growth factor independent 1 transcription repressor GFI1a

Iroquois homeobox 2 IRX2
LIM homeobox 3 LHX3a

Myod family inhibitor MDFIb

MLX interacting protein-like MLXIPL
Nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 NFATC1
Brain-specific homeobox/POU domain protein 3 POU4F3a

SKI family transcriptional corepressor 1 SKOR1
SKI family transcriptional corepressor 2 SKOR2
Zinc finger protein 385B ZNF385B

Transcription factor gene expression clusters
Dip at 54 hours (18 genes) coincident with phenotypic conversion

(centroid number � 7)
B-cell translocation gene 1, anti-proliferative BTG1
Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-

terminal domain, 4
CITED4

Hairy and enhancer of split 5 HES5
Hairy and enhancer of split 7 HES7
Interferon regulatory factor 4 IRF4
Hairy and enhancer of split 5-like LOC419390
Myod family inhibitor MDFI
PR domain containing 5 PRDM5
Prickle homolog 1 PRICKLE1
Prickle homolog 2 PRICKLE2
Synovial sarcoma translocation gene on chromosome 18-like 1 SS18L1
Storkhead box 1 STOX1
Tripartite motif containing 24 TRIM24
Teashirt zinc finger homeobox 1 TSHZ1
Zinc finger, matrin-type 4 ZMAT4
Zinc finger protein 385B ZNF385B
Zinc finger protein 395 ZNF395
Zinc finger protein 804A ZNF804A

Dip at 120 hours (25 genes) coincident with cell cycle cessation (centroid
number � 13)

AT rich interactive domain 5A (MRF1-like) ARID5A
Camp responsive element modulator CREM
Histone deacetylase 7 HDAC7
Inhibitor of DNA binding 2, dominant negative helix-loop-helix protein ID2
Notch 1 NOTCH1
Nuclear receptor subfamily 4, group A, member 3 NR4A3
Peroxisome proliferator-activated receptor delta PPARD
Serum response factor (c-fos serum response element-binding

transcription factor)
SRF

Tripartite motif containing 45 TRIM45
Zinc finger protein 503 ZNF503
Zinc finger protein 541 ZNF541
Atonal homolog 1 ATOH1
Distal-less homeobox 5 DLX5
Distal-less homeobox 6 DLX6
Ets homologous factor EHF
E74-like factor 3 (ets domain transcription factor, epithelial-specific) ELF3
Forkhead box J1 FOXJ1
Hematopoietic cell-specific Lyn substrate 1 HSLS1
Hairy and enhancer of split 6 HES6
Hairy/enhancer-of-split related with YRPW motif-like HEYL
Inhibitor of DNA binding 1, dominant negative helix-loop-helix protein ID1
Inhibitor of DNA binding 4, dominant negative helix-loop-helix protein ID4
MLX interacting protein-like MLXIPL

Table continued

Table 2. Continued

Description Gene

SWI/SNF related, matrix associated, actin dependent regulator of
chromatin, subfamily c, member 1

SMARCC1

Zinc finger, MYND-type containing 10 ZMYND10
Peaks at 54 –72 hours (8 genes) coincident with phenotypic conversion

(centroid number � 16)
Ankyrin repeat domain 33 ANKRD33
Four and a half LIM domains 2 FHL2
Forkhead box F1 FOXF1
Iroquois homeobox 2 IRX2
LIM domain only 3 (rhombotin-like 2) LMO3
Mastermind-like domain containing 1 MAMLD1
Recombination signal binding protein for immunoglobulin kappa J

region-like
RBPJL

Vitamin D (1,25-dihydroxyvitamin D3) receptor VDR

There are 14 transcription factor genes that are potential new hair cell markers by clustering analysis. A list of
transcription factor genes that correlate with three of the patterns of gene expression are shown in Figure 8. All gene
lists and centroid numbers are available online.
aKnown hair cell markers.
bValidated in this study (see Fig. 5).
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and correlates well with the intermediate
peaks in hair cell marker expression. A
surprising observation is the closely paral-
lel pattern of gene expression exhibited by
the HES7 gene (Fig. 7B). This gene plays a
key oscillatory role in somitogenesis
(Niwa et al., 2011), but has never been
investigated or implicated in inner ear de-
velopment. It is expressed at an �10-fold
lower level than HES5 in our dataset, but it
also exhibits a parallel dip in expression at
54 h and a �8-fold increase in expression
by the end of the regenerative time course.

ATOH1, like HES5, is abundant within
the regenerative transcriptome. It exhibits
an �2-fold increase in abundance over
the time course with dips at 54 and 120 h
(Fig. 7C). The latter is coincident with the
time period when cell division is ceasing
and hair cell differentiation is occurring.
This pattern of ATOH1 expression is
highly correlated with expression of the
HEYL gene (hairy/enhancer-of-split related
with YRPW motif-like). This coexpres-
sion has not been previously described
and our observation suggests that a possi-
ble upstream coregulator of these two
bHLH genes may exist within the regener-
ating utricle sensory epithelia. One down-
stream target of ATOH1 is HES6 (Qian et
al., 2006), which exhibits much larger fold
changes than ATOH1, reaching a 10-fold
increase in expression relative to the con-
trols at 72 h (Fig. 7C). It is interesting that
the drop in HES5 expression at 54 h does
not correlate with any corresponding ma-
jor increase in ATOH1 expression (a
known repressor of HES5). Therefore,
some effector(s) other than ATOH1 may
downregulate HES5 expression at this
time point.

Together, these observations highlight
several coordinate patterns of gene ex-
pression that involve previously unex-
plored components of NOTCH signaling.
They also point to a highly punctuated
switch occurring in NOTCH signaling in
the �48 –72 h window of regeneration
consistent with phenotypic conversion.

Figure 6. Examples of gene networks within the clustered data. A, Network of interactions between putative hair-cell-specific
genes. All 526 hair-cell-specific gene names from the clustering analysis were uploaded to g:Profiler and analyzed as described in
the Materials and Methods. This figure includes only genes detectably expressed in the regenerative time course. Red circles denote
genes within the 526 putative hair-cell-specific input set. Red lines indicate interactions between those genes/gene products.

4

Blue circles denote additional genes within the differentially
expressed subset. Black circles denote genes that are detect-
able but not differentially expressed. Black lines denote inter-
actions between genes/gene products. B, Network of
interactions between some of the transcription factor genes
within clusters 13 and 15 (Fig. 8) exhibiting a dip in expression
at 120 h. This includes only genes that are detectably ex-
pressed in the regenerative time course. Color coding as in A
except red genes are differentially expressed transcription fac-
tors in these clusters.
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FGF signaling
The FGF family and their receptors are key regulators of devel-
opment in the inner ear (Schimmang, 2007). Twelve members of
the FGF gene family are detectably expressed in our dataset. Of
these, six (FGF3, FGF12, FGF14, FGF16, FGF19, and FGF20) are
differentially expressed. FGF3 and FGF20 mouse gene knock-
outs result in inner ear malformations (Alvarez et al., 2003;
Hayashi et al., 2008), but FGF12, FGF14, FGF16, and FGF19 have
not yet been investigated in hair cell development or regenera-
tion. Of the five described FGF receptors, we can detect four
(FGFR1, FGFR2, FGFR3, and FGFRL1) at above threshold levels,
but only FGFR3 passes our filters. In Figure 7, the six FGFs that
show large changes in gene expression are shown according to
their known modes of action (Itoh and Ornitz, 2008). Two
(FGF12 and FGF14) are intracrine FGFs that appear to operate as
intracellular signaling molecules. They may have some functional
redundancy, but in this case their gene expression patterns are
quite different. FGF12 is initially downregulated (Fig. 7D) and
recovers by 168 h. A more dramatic pattern is seen for FGF14,
which is initially upregulated by 4-fold. It decreases in abun-
dance, remaining downregulated throughout the remainder of

the time course. There is a well established
connection between FGF14 and the regu-
lation of voltage-gated sodium (NAv)
channel function (Lou et al., 2005), sug-
gesting that the early stages of the regen-
erative time course may be a time of
rapidly changing channel function in the
supporting cells.

The FGF3, FGF16, and FGF20 genes
encode classic paracrine FGFs that act
through FGFRs. Of these, FGF16 and
FGF20 are most closely related (Itoh and
Ornitz, 2008). These gene expression pat-
terns are shown in Figure 7E and some
similarities can be seen. They both exhibit
fluctuations in an overall upward direc-
tion, diverging at the end of the time
course. In contrast, FGF3 is downregu-
lated throughout the regenerative time
course and only rebounds at the onset of
hair cell differentiation in the 144 –168 h
time period. The final FGF that passes our
filters is FGF19. This is a member of the
small family of FGFs that have the ability
to act at a distance in an endocrine man-
ner (Itoh and Ornitz, 2008). This gene is
dramatically downregulated between 0
and 54 h (Fig. 7F) and then exhibits a sig-
nificant rebound in expression at 66 –72
h, followed by an 8-fold drop in expres-
sion at 96 h and a rebound again at 144 h.
This interesting pattern of gene expres-
sion parallels the two phases of hair cell
production and suggests that this FGF
may be an interesting candidate for func-
tional follow-up.

The final components shown in Figure
7F are FGFR1 and FGFR3. FGFR1 did not
pass our filters, but only narrowly. It is
�10-fold higher in transcript abundance
than FGFR3 and displays an expression
pattern that is almost the reciprocal of

FGFR3, starting 2-fold higher than controls and ending slightly
lower, whereas FGFR3 starts 2-fold lower and ends the time
course 2-fold higher than controls.

Although complex, the expression patterns of FGFs and
FGFRs described here suggest a functional role for FGF signal-
ing in utricular regeneration. Prior studies have shown that
FGF20 interacts preferentially with FGFR3 (Itoh and Ornitz,
2011). Our data indicate that both FGF20 and FGFR3 tran-
scripts are low shortly after ototoxic injury (when prolifera-
tion levels are high), but then increase later when regenerative
proliferation stops and hair cell differentiation occurs. One
interpretation of these findings is that FGF20 signaling may
inhibit (rather than promote) supporting cell proliferation.
To test this, we treated cultured utricles (n � 11) with exoge-
nous FGF20 immediately after ototoxic injury. Cultures were
maintained for 48 h and a proliferation index was measured by
BrdU incorporation. Control cultures did not receive FGF20.
Results indicated that FGF20 significantly reduced supporting
cell proliferation (32.5 � 9.9 BrdU-labeled cells/10,000 �m 2

in control specimens vs 12.3 � 9.6 labeled cells/10,000 �m 2 in
FGF20-treated specimens, p � 0.0001). In contrast, treatment

Figure 7. Changes in specific components of the NOTCH and FGF signaling pathways during regeneration. The x-axis indicates
individual time points. The y-axis shows the fold change of streptomycin-treated versus control samples on a log2 scale. A,
Expression profiles of ATOH1, DLL1, and HES5 at 24 h intervals across the 168 h time course. B, Expression profiles of HES5 and HES7
with the addition of detailed sampling within the 48 –72 h period at 6 h intervals. C, Expression profiles of ATOH1, HES6, and HEYL.
D, Expression profiles of differentially expressed intracrine FGFs (FGF12 and FGF14). E, Expression profiles of differentially expressed
paracrine FGFs (FGF3, FGF16, and FGF20). F, Expression profiles of FGF19, FGFR1, and FGFR3.
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for 48 h with an inhibitor of FGF receptors (SU5402) had no
significant impact on proliferation (33.7 � 13.2 labeled cells/
10,000 �m 2 in SU5402-treated cultures vs 26.8 � 6.7 labeled
cells/10,000 �m 2 in control cultures, p � 0.21). Notably, ap-
plication of FGF2 (the expression levels of which did not show
significant changes in the regenerating utricle) can also inhibit
supporting cell proliferation (Oesterle et al., 2000). Together,
these data suggest that FGF signaling (specifically FGF20) may
be a negative regulator of regenerative proliferation in the
avian utricle.

Differentially expressed transcription factor genes
Among the differentially expressed genes, we were interested in
identifying those encoding transcription factors that are potential
key regulators of the regenerative program. We compiled a
nonredundant list of transcription factors from three databases
and recent publications (Thomas et al., 2003; Messina et al., 2004;
Fulton et al., 2009; Vaquerizas et al., 2009; Ravasi et al., 2010;
Zhang et al., 2012) and compared that with our list of differen-
tially expressed genes. In this way, we identified 212 differentially
expressed transcription factors (several of which are highlighted
in Table 2). The vast majority of these have never been investi-
gated in hair cell regeneration or in the development of the
inner ear.

We next derived 16 SOMs from these gene expression profiles
to identify distinct expression patterns. These are shown in Figure
8 and fall into nine patterns, with one additional group of four
“complex” centroids (Fig. 8J).

Figure 8A shows a centroid enriched for hair-cell-specific
transcription factors. These comprise 21 genes and include
known hair-cell-specific transcription factor genes (POU4F3,
GFI1, and LHX3) and others identified in this study (ANKRD5,
DPF3, NFATC1, and SKOR1). The hair cell expression filters that
we imposed above on the total gene set were quite conservative.
Therefore, the additional 15 transcription factors within this
group may represent additional hair-cell-specific transcription
factors. Figure 8C is enriched for genes that parallel the HES5 and
HES7 patterns of gene expression with changes in expression
coincident with phenotypic conversion listed in Table 2. Partic-
ularly interesting in this cluster is the BTG1 gene, which appears
to have antiproliferative and prodifferentiation functions
(Rouault et al., 1992; Rodier et al., 1999), the interferon regula-
tory factor 4 (IRF4) gene (Grossman et al., 1996), and the Cbp/
p300-interacting transactivator (CITED4; Bragança et al., 2002),
none of which have been previously investigated or implicated in
sensory epithelia regeneration. Figure 8I shows eight genes that
exhibit peaks of expression in the 54 –72 h window of the time
course. These are attractive candidates for playing roles in the

Figure 8. Gene expression profiles of differentially expressed transcription factors clustered into 16 centroids by SOMs. The 212 differentially expressed transcription factors were grouped by
SOMs (Partek) according to their expression patterns. The x-axis of each group indicates individual time points. The y-axis shows the normalized fold change on a log2 scale. Centroids were then
manually grouped according to their shared overall expression patterns. See Differentially expressed transcription factor genes in the Results for a description of patterns A–J.
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phenotypic conversion process. Among the most highly ex-
pressed in this class are two implicated in the NOTCH pathway:
MAMLD1 (mastermind-like, a coactivator in NOTCH signaling)
and RBPJL (similar to the RBPJ gene in NOTCH signaling; Table
2). Figure 8G shows clusters that share a pronounced drop at
120 h coincident with cell cycle cessation. Seven of these 25 genes,
including NOTCH1, show evidence for network interactions and
tie together a predicted network of 138 genes that are detectable
in the time course (Fig. 6B). This network provides strong con-
firmatory evidence that these genes are functionally connected
and provides insights into their possible downstream effectors.
The genes shown in Figure 8G are also of particular note because
they contain seven of the 20 helix loop helix (HLH) or basic helix
loop helix (bHLH) family of genes present in the list of differen-
tially expressed transcription factors. Of these, five (ATOH1,
HEYL, ID4, ID2, and ID1) are highly correlated and are particu-
larly interesting. The ID gene family consists of four HLH paral-
ogs (ID1–ID4). They encode dominant-negative inhibitors of
bHLH genes such as ATOH1. ID1, ID4, and ID2 all show a strong
positive correlation with ATOH1 expression during utricle sen-
sory epithelia regeneration. A preliminary computational analy-
sis of the promoter-proximal regions of these genes did not reveal
any shared DNA sequence motifs (data not shown). Nevertheless,
coordinate regulation through more distal regulatory elements
cannot be discounted. ID genes are among the most highly ex-
pressed transcription factor genes in the regenerating sensory
epithelia. These observations suggest that ID proteins are present
at very high levels and are probably in vast excess compared with
many of their targets (activating bHLH proteins). It is clear that
the pattern of ATOH1 and ID gene expression in the regenerating
avian utricle sensory epithelia is highly correlated and thus very
different from that described for the mouse auditory sensory ep-
ithelia (Jones et al., 2006), in which these genes appear to show
reciprocal patterns of expression. These observations suggest that
different regulatory circuits may operate in the auditory and ves-
tibular epithelia to modulate the activity of ATOH1 and addi-
tional bHLH genes.

Discussion
Here, we have derived the most comprehensive description to
date of the mRNA transcriptome during hair cell regeneration.
Our previous study of this process (Hawkins et al., 2007) focused
only on the first 48 h of regeneration and solely upon transcrip-
tion factor genes (many of which at that time had no clear chicken
orthologs). A total of 87 transcription factor genes identified in
those earlier expression profiles overlap with the present study.
Clearly, our new dataset represents a greatly expanded, much
more complete, accurate, and highly complex genetic toolbox for
investigations of sensory regeneration and for comparisons with
the nonregenerative mammalian inner ear. In particular, in the
present study, we have emphasized patterns and pathways of gene
expression that correlate well with three phenotypes of the regen-
erative sensory epithelia; DNA replication/cell cycle control, phe-
notypic conversion, and regenerative proliferation. We also
identified additional patterns that we predict are enriched for
genes affecting processes such as apoptosis, RNA processing, and
components of the hair cell transcriptome (Fig. 1). In the latter
case, we tested our prediction directly by determining the hair cell
specificity of three randomly chosen genes in this subset by im-
munohistochemistry. As predicted, all of these showed hair cell
specificity.

A surprising observation from our dataset is the highly punc-
tuated nature of the events that occur across this time course.

DNA replication and the expression of cell cycle components
appear quite synchronous and provide patterns of gene expres-
sion that are highly diagnostic. Likewise, the process of pheno-
typic conversion appears to occur in the 48 –72 h time period and
is likely to be reflected in highly dynamic patterns of expression
for many genes in this time window, particularly many of the
known components of Notch signaling. The high levels of prolif-
eration observed in the utricle suggest that most new hair cells are
created by cell division, rather than through phenotypic conver-
sion. Therefore, signals that are entirely specific to the new hair
cell population in this time window appear minor when this di-
lution effect is not taken into account. With that in mind, if the
overall 2-fold increase in ATOH1 expression from 60 h through
72 h is hair cell specific, then this would reflect a very large induc-
tion of this transcription factor. In that same context, the changes
in HES5 (considered to be a supporting cell marker), if they are
occurring in all of the supporting cells in this same time frame,
would be relatively smaller compared with ATOH1. It remains to
be seen whether the additional dynamically expressed genes in
this time interval mark supporting cells, new hair cells, or cell
subpopulations.

We anticipate that this resource will prove immediately
useful as a source of components to test systematically by
knock-downs or overexpression analyses (Alvarado et al.,
2011). We extracted considerable pathway and network anno-
tations to enhance data accessibility and utility. Several of
these pathways have been implicated previously in inner ear
sensory epithelia biology. However, our annotations now
identify the exact individual components within these path-
ways, their relative transcript abundances, and changes in gene
expression. In some cases, this reveals surprising pathways and
genes that have not been implicated previously in sensory ep-
ithelia function or regeneration. As noted in Notch pathways
in the Results, above, several surprising components of Notch
signaling (e.g., HES7 ) are present in our dataset or exhibit
interesting patterns of coordinate expression (e.g., HEYL and
ATOH1). In addition to the many transcription factors we
have identified that have never been implicated in inner ear
development or regeneration, there are numerous other sur-
prising new candidates. Some notable examples occur among
members of what appears to be the regenerative “secretome.”
Prominent among these is leukemia inhibitory factor (LIF), a
cytokine capable of inducing differentiation in numerous cell
types, including leukemic and neuronal cells (Chen et al.,
2010; Mathieu et al., 2012). LIF transcripts, along with several
additional components of the LIF signaling pathway (Ip et al.,
1992), are abundant and differentially expressed during sen-
sory epithelia regeneration. The regenerating pure avian sen-
sory epithelium also produces a surprisingly complex mixture
of what have been historically regarded as growth and differ-
entiation factors of the hematopoietic system. These inflam-
matory modulators have not yet been investigated in inner ear
sensory epithelia. For example, we observed robust expression
of the chemokine CXCL14, which is found in zebrafish lateral
line neuromasts (Long et al., 2000). Although the function of
CXCL14 is not known, it is expressed in the chick utricle
throughout the regenerative time course and is among the
most abundant transcripts. Additional chemokines, cyto-
kines, and their receptors are also differentially expressed in
our dataset, including CCL17, CCL4, CXCL12, and CXCR4. In
addition, we observed 14 interleukins or interleukin receptors
within our differentially expressed dataset. Most prominent
among these are IL18, IL16, IL22RA1, and IL6. Of these, IL6 is
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produced by many different epithelia and plays a role in
epithelial-stromal interactions (Elner et al., 1992; Notara et
al., 2010). All of these are attractive candidates for functional
follow-up. Finally, our observations suggest novel roles for
FGF signaling in the regenerating utricle. We observed robust
expression of the intracrine factors FGF12 and FGF14, the
function of which has not been investigated previously in the
ear. In addition, our data suggest that FGF20, which regulates
the differentiation of outer hair cells in the developing co-
chleae of mammals (Huh et al., 2012), may act to suppress
regenerative proliferation in the chick utricle. Notably, en-
hanced expression of FGF20 begins at �3– 4 d after ototoxic
injury as regenerative proliferation is terminating and replace-
ment hair cells are beginning to differentiate. It is possible that
expression of FGF20 serves as a “stop” signal in the prolifera-
tive process.

One motivation for conducting this study was to identify the
best candidates for controlling the regenerative cascade in birds
and possibly affecting regeneration in the mammalian inner ear.
In particular, the transcription factor genes we have highlighted
here should provide useful starting points in deciphering the ex-
act genetic circuitry of hair cell regeneration. This resource may
also prove useful as a source of candidate genes for studies of
other sustentacular stem cell populations that give rise to neurons
and sensory cells in many nonmammalian vertebrates.

Notes
Supplemental material for this article is available at https://workspace.
imperial.ac.uk/medicine/Public/PWPs/HimaAnbunathan/Ku.et.al.Archive.
zip. Ten tables describing qRT-PCR, complete dataset, clustering, and pathway
analysis. This material has not been peer reviewed.
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