19 research outputs found

    Urban green infrastructure planning as a contribution to the smart ‘green’ city

    Get PDF
    The urban green infrastructure is getting due to the strong growth of the City of Vienna under increasing pressure. A foresighted planning of green and open spaces is necessary to obtain the different "Ecosytem Services" - provision-related services, regulatory services, cultural services and support services (MEA 2005). Additionally an increase in the number of hot days and thus an increase of the heat load in the city is predicted for Vienna (ZAMG 2012). Again, making a foresighted planning of green and open spaces is a significant contribution to meet these climatic challenges (Kuffner A. 2012, Hagen et al. 2010). Based on the concept of "green infrastructure" (Pauleit et al. 2011) and the ecosystem services of these, it is shown which contribution - in particular to reduce the heating of the city - they can make to the Smart City concept

    Oxytocin induces the formation of distinctive cortical representations and cognitions biased toward familiar mice

    Get PDF
    Social recognition is essential for the formation of social structures. Many times, recognition comes with lesser exploration of familiar animals. This lesser exploration has led to the assumption that recognition may be a habituation memory. The underlying memory mechanisms and the thereby acquired cortical representations of familiar mice have remained largely unknown, however. Here, we introduce an approach directly examining the recognition process from volatile body odors among male mice. We show that volatile body odors emitted by mice are sufficient to identify individuals and that more salience is assigned to familiar mice. Familiarity is encoded by reinforced population responses in two olfactory cortex hubs and communicated to other brain regions. The underlying oxytocin-induced plasticity promotes the separation of the cortical representations of familiar from other mice. In summary, neuronal encoding of familiar animals is distinct and utilizes the cortical representational space more broadly, promoting storage of complex social relationships

    Reset of inflammatory priming of joint tissue and reduction of the severity of arthritis flares by bromodomain inhibition

    Full text link
    OBJECTIVE: We have recently shown that priming of synovial fibroblasts (SFs) drives arthritis flares. Pathogenic priming of SFs is essentially mediated by epigenetic reprogramming. Bromodomain and extra-terminal motif (BET) proteins translate epigenetic changes into transcription. Here we used a BET inhibitor to target inflammatory tissue priming and reduce flare severity in experimental arthritis. METHODS: BALB/c mice were treated intraperitoneally or locally into the paw with I-BET151, which blocks interaction of BET proteins with acetylated histones. Effect of I-BET151 on acute arthritis and/or inflammatory tissue priming was assessed in a model of repeated injections of monosodium urate crystals or zymosan into the paw. I-BET151 was given either from before arthritis induction, at peak inflammation, or after healing of the first arthritis bout. Transcriptomic (RNA-Seq), epigenomic (ATAC-Seq) and functional analysis (invasion, cytokine production, migration, senescence, metabolic flux) was performed on murine and human SFs treated with I-BET151 in vitro or in vivo. RESULTS: Systemic I-BET151 administration did not affect acute inflammation but abolished inflammatory tissue priming and diminished flare severity in both preventive and therapeutic treatment settings. I-BET151 was also effective when applied locally in the joint. BET inhibition also inhibited osteoclast differentiation, while macrophage activation in the joint was not affected. Flare reduction after BET inhibition was mediated, at least in part, by rolling back the primed transcriptional, metabolic and pathogenic phenotype of SFs. CONCLUSION: Inflammatory tissue priming is dependent on transcriptional regulation by BET proteins, which makes them promising therapeutic targets for preventing arthritis flares in previously affected joints

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Scale cortisol, biomarkers, and gut microbiome of milkfish (Chanos chanos) experimentally exposed to thermal stress

    No full text
    Milkfish (Chanos chanos) is one of the most important aquaculture species in Asian countries. These teleost fish are traditionally cultured in outdoor-based systems and therefore have to cope with daily and/or seasonally changing environmental conditions. Temperature changes beyond the optimal range of a fish species are known to induce an endocrine stress response resulting in the release of cortisol via the hypothalamic-pituitary-interrenal axis. Moreover, (thermal) stress induces glucocorticoid-mediated changes in the fish's energy metabolism to cope with the stressor(s) and regain homeostasis. Long-term elevations of cortisol are known to be detrimental for fish performance. In this study, we investigated the stress response of juvenile milkfish, which were exposed to a gradual temperature increase of 1°C per day over 7 days in the range from 26°C to 33°C, followed by an exposure to constant 33°C for 21 days. We quantified ontogenetic (OG) and regenerated (RG) scale cortisol to evaluate chronic stress. To investigate metabolic implications and oxidative stress response, activity levels of key enzymes involved in metabolic (isocitrate dehydrogenase - IDH, lactate dehydrogenase - LDH, electron transfer system - ETS) and antioxidant (superoxide dismutase - SOD, catalase - CAT) related pathways were quantified. Furthermore, we measured available energy resources (protein, carbohydrates, lipids) and potential cellular damage due to oxidative stress (lipid peroxidation - LPO). Finally, changes in the gut microbiome of the milkfish related to the temperature stress were analyzed to elucidate their role in the stress response and interactions with physiological parameters. This study is part of the ACUTE project (AquaCUlture practice in Tropical coastal Ecosystems - Understanding ecological and socio-economic consequences) funded by the Leibniz Association grant SAW-2015-ZMT-4. It is associated with the following publications: Hanke et al., 2019 (doi:10.1016/j.aquaculture.2018.09.016) and Hassenrück et al., 2020 (doi:10.3390/microorganisms9010005). The final OTU table and statistical analysis scripts for Hassenrück et al., 2020 are supplied as further details to this data set

    The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts

    Full text link
    Arthritis typically involves recurrence and progressive worsening at specific predilection sites, but the checkpoints between remission and persistence remain unknown. Here, we defined the molecular and cellular mechanisms of this inflammation-mediated tissue priming. Re-exposure to inflammatory stimuli caused aggravated arthritis in rodent models. Tissue priming developed locally and independently of adaptive immunity. Repeatedly stimulated primed synovial fibroblasts (SFs) exhibited enhanced metabolic activity inducing functional changes with intensified migration, invasiveness and osteoclastogenesis. Meanwhile, human SF from patients with established arthritis displayed a similar primed phenotype. Transcriptomic and epigenomic analyses as well as genetic and pharmacological targeting demonstrated that inflammatory tissue priming relies on intracellular complement C3- and C3a receptor-activation and downstream mammalian target of rapamycin- and hypoxia-inducible factor 1α-mediated metabolic SF invigoration that prevents activation-induced senescence, enhances NLRP3 inflammasome activity, and in consequence sensitizes tissue for inflammation. Our study suggests possibilities for therapeutic intervention abrogating tissue priming without immunosuppression

    Multi-Level Toolset for Steering Urban Green Infrastructure to Support the Development of Climate-Proofed Cities

    No full text
    Adapting spatial development to the challenges of climate change is a major task facing cities. In particular, urban heat islands caused by increasing average temperatures and urban growth are a challenge for cities. The use of climate simulations to assess current and future urban heat stress is a helpful approach for supporting this transition. In particular, green and blue infrastructure helps to reduce the urban heat island effect. These cooling effects can be analysed using simulations. However, a central challenge is that urban adaptation to heat needs to be implemented consistently at different planning levels. A second major challenge in adaption is identifying the amount of urban green infrastructure required in order to achieve a specific cooling benefit and establishing this by means of planning instruments. This article presents two case studies in the city of Vienna to demonstrate how climate simulation tools can be used across different planning levels if they are standardized. When combined with a green and open space factor as a steering instrument, the necessary amount of greening for subsequent planning processes can be secured. The result is a multi-scale toolset consisting of three climate simulation models and a green and open space factor, coordinated, and standardised for use at different levels of planning
    corecore