314 research outputs found

    Rituximab treatment in pediatric-onset multiple sclerosis

    No full text
    Background and purpose: Rituximab (RTX) is frequently used off-label in multiple sclerosis. However, studies on the risk–benefit profile of RTX in pediatric-onset multiple sclerosis are scarce. Methods: In this multicenter retrospective cohort study, patients with pediatric-onset multiple sclerosis from Sweden, Austria and Germany, who received RTX treatment were identified by chart review. Annualized relapse rates, Expanded Disability Status Scale scores and magnetic resonance imaging parameters (new T2 lesions and contrast-enhancing lesions) were assessed before and during RTX treatment. The proportion of patients who remained free from clinical and disease activity (NEDA-3) during RTX treatment was calculated. Side effects such as infusion-related reactions, infections and laboratory abnormalities were assessed. Results: Sixty-one patients received RTX during a median (interquartile range) follow-up period of 20.9 (35.6) months. The annualized relapse rate decreased from 0.6 (95% confidence interval [CI] 0.38–0.92) to 0.03 (95% CI 0.02–0.14). The annual rate of new T2 lesions decreased from 1.25 (95% CI 0.70–2.48) to 0.08 (95% CI 0.03–0.25) and annual rates of new contrast-enhancing lesions decreased from 0.86 (95% CI 0.30–3.96) to 0. Overall, 70% of patients displayed no evidence of disease activity (NEDA-3). Adverse events were observed in 67% of patients. Six patients discontinued treatment due to ongoing disease activity or adverse events. Conclusion: Our study provides class IV evidence that RTX reduces clinical and radiological activity in pediatric-onset multiple sclerosis

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    (Anti-)deuteron production in pp collisions at s=13 TeV\sqrt{s}=13 \ \text {TeV}

    No full text
    International audienceThe study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons\text {(anti-)deuterons} is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13\sqrt{s}=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (dNch/dη∌26{\mathrm {d} N_{ch}/\mathrm {d} \eta } \sim 26) as measured in p–Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p–Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)

    (Anti-)Deuteron production in pp collisions at √s = 13 TeV

    No full text
    The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s√=13 TeV using the ALICE experiment. Thanks to the large accumulated integrated luminosity, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (dNch/dη∌26) as measured in p-Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p-Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and Statistical Hadronisation Models (SHM)

    Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The differential invariant yield as a function of transverse momentum (pT) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0–10%), semi-central (30–50%) and peripheral (60–80%) lead–lead (Pb–Pb) collisions at √sNN = 5.02 TeV in the pT intervals 0.5–26 GeV/c (0–10% and 30–50%) and 0.5–10 GeV/c (60–80%). The production cross section in proton–proton (pp) collisions at √s = 5.02 TeV was measured as well in 0.5 < pT < 10 GeV/c and it lies close to the upper band of perturbative QCD calculation uncertainties up to pT = 5 GeV/c and close to the mean value for larger pT. The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon–nucleon collisions is evaluated by measuring the nuclear modification factor RAA. The measurement of the RAA in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. The RAA shows a suppression with respect to unity at intermediate pT, which increases while moving towards more central collisions. Moreover, the measured RAA is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low pT in heavy-ion collisions at LHC

    Measurement of beauty production via non-prompt D0{\rm D}^{0} mesons in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    The production of non-prompt D0{\rm D}^{0} mesons from beauty-hadron decays was measured at midrapidity (∣y∣5 GeV/c\left| y \right| 5~\mathrm{GeV}/c in the 0−100-10% central Pb-Pb collisions. The data are described by models that include both collisional and radiative processes in the calculation of beauty-quark energy loss in the quark-gluon plasma, and quark recombination in addition to fragmentation as a hadronization mechanism. The ratio of the non-prompt to prompt D0{\rm D}^{0}-meson RAAR_{\rm AA} is larger than unity for pT>4 GeV/cp_{\rm T} > 4~\mathrm{GeV}/c in the 0−100-10% central Pb-Pb collisions, as predicted by models in which beauty quarks lose less energy than charm quarks in the quark-gluon plasma because of their larger mass

    First measurement of the absorption of 3He‟^{3}\overline{\rm He} nuclei in matter and impact on their propagation in the galaxy

    No full text
    Antimatter particles such as positrons and antiprotons abound in the cosmos. Much less common are light antinuclei, composed of antiprotons and antineutrons, which can be produced in our galaxy via high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of the still undiscovered dark-matter particles. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators like the Large Hadron Collider (LHC). Though the properties of elementary antiparticles have been studied in detail, knowledge of the interaction of light antinuclei with matter is rather limited. This work focuses on the determination of the disappearance probability of \ahe when it encounters matter particles and annihilates or disintegrates. The material of the ALICE detector at the LHC serves as a target to extract the inelastic cross section for \ahe in the momentum range of 1.17≀p<101.17 \leq p < 10 GeV/cc. This inelastic cross section is measured for the first time and is used as an essential input to calculations of the transparency of our galaxy to the propagation of 3He‟^{3}\overline{\rm He} stemming from dark-matter decays and cosmic-ray interactions within the interstellar medium. A transparency of about 50% is estimated using the GALPROP program for a specific dark-matter profile and a standard set of propagation parameters. For cosmic-ray sources, the obtained transparency with the same propagation scheme varies with increasing 3He‟^{3}\overline{\rm He} momentum from 25% to 90%. The absolute uncertainties associated to the 3He‟^{3}\overline{\rm He} inelastic cross section measurements are of the order of 10%−-15%. The reported results indicate that 3He‟^{3}\overline{\rm He} nuclei can travel long distances in the galaxy, and can be used to study cosmic-ray interactions and dark-matter decays

    First study of the two-body scattering involving charm hadrons

    No full text
    This Letter presents the first measurement of the interaction between charm hadrons and nucleons. The two-particle momentum correlations of pD−\mathrm{pD^-} and p‟D+\mathrm{\overline{p}D}^+ pairs are measured by the ALICE Collaboration in high-multiplicity pp collisions at s=13 TeV\sqrt{s} = 13~\mathrm{TeV}. The data are compatible with the Coulomb-only interaction hypothesis within (1.1-1.5)σ\sigma. Considering an attractive nucleon(N)D‟\overline{\mathrm{D}} strong interaction, in contrast to most model predictions which suggest an overall repulsive interaction, slightly improves the level of agreement. This measurement allows for the first time an estimation of the 68% confidence level interval for the isospin I=0\mathrm{I}=0 inverse scattering length of the ND‟\mathrm{N\overline{D}} state f0, I=0−1∈[−0.4,0.9] fm−1{f_{0,~\mathrm{I}=0}^{-1} \in [-0.4,0.9]~\mathrm{fm^{-1}}}, assuming negligible interaction for the isospin I=1\mathrm{I}=1 channel

    Investigating charm production and fragmentation via azimuthal correlations of prompt D mesons with charged particles in pp collisions at s=13\mathbf {\sqrt{ s} = 13} TeV

    No full text
    International audienceAngular correlations of heavy-flavour and charged particles in high-energy proton–proton collisions are sensitive to the production mechanisms of heavy quarks and to their fragmentation as well as hadronisation processes. The measurement of the azimuthal-correlation function of prompt D mesons with charged particles in proton–proton collisions at a centre-of-mass energy of s=13\sqrt{s} = 13 TeV with the ALICE detector is reported, considering D0\mathrm D^{0} , D+\mathrm D^{+} , and D∗+\mathrm D^{*+} mesons in the transverse-momentum interval 30.33 0.3 GeV/cc and pseudorapidity ∣η∣<0.8|\eta | < 0.8. This measurement has an improved precision and provides an extended transverse-momentum coverage compared to previous ALICE measurements at lower energies. The study is also performed as a function of the charged-particle multiplicity, showing no modifications of the correlation function with multiplicity within uncertainties. The properties and the transverse-momentum evolution of the near- and away-side correlation peaks are studied and compared with predictions from various Monte Carlo event generators. Among those considered, PYTHIA8 and POWHEG+PYTHIA8 provide the best description of the measured observables. The obtained results can provide guidance on tuning the generators

    Hypertriton production in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The study of nuclei and antinuclei production has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. The first measurement of the production of 3ΛH in p-Pb collisions at sNN−−−√ = 5.02 TeV is presented in this Letter. Its production yield measured in the rapidity interval −1<y<0 for the 40% highest multiplicity p-Pb collisions is dN/dy=[6.3±1.8(stat.)±1.2(syst.)]×10−7. The measurement is compared with the expectations of statistical hadronisation and coalescence models, which describe the nucleosynthesis in hadronic collisions. These two models predict very different yields of the hypertriton in charged particle multiplicity environments relevant to small collision systems such as p-Pb and therefore the measurement of dN/dy is crucial to distinguish between them. The precision of this measurement leads to the exclusion with a significance larger than 6.9σ of some configurations of the statistical hadronization model, thus constraining the theory behind the production of loosely bound states at hadron colliders
    • 

    corecore