70 research outputs found

    Threat of Foreign Arthropod-Borne Pathogens to Livestock in the United States

    Get PDF
    There are many exotic animal pathogens throughout the world that, if introduced into the United States, could have a significant detrimental impact on the health of livestock, agricultural economy, the environment, and public health. Many of these pathogens are arthropod-borne and potential vectors are readily available in the United States. A number of these arthropod-borne pathogens are discussed here as examples that illustrate the potential risk and the consequences of inadvertent introductions. Several International agencies have a role in global surveillance and in controlling animal diseases should they begin to expand their range. The risk to the United States is considerable. We propose that the United States invest in the improved infrastructure needed to reduce the risk of foreign arthropod-borne pathogens. Current U.S. programs focus on the exclusion of pathogens through regulation of animal movements and products, surveillance, especially trained animal disease diagnosticians, research support, international cooperation and, should pathogens enter our country, the resources for their prompt eradication. We suggest that the United States needs to develop a comprehensive, updated strategic plan to assess all aspects of current and future requirements, objectives, and resources needed to protect its national interests

    Understanding AGN-host connection in partially obscured active galactic nuclei. Part III: Properties of ROSAT-selected SDSS AGNs

    Full text link
    As the third paper of our serial studies that are aim at examining the AGN-host coevolution by using partially obscured AGNs, we extend the broad-line composite galaxies (composite AGNs) into ROSAT-selected Seyfert 1.8/1.9 galaxies basing upon the RASS/SDSS-DR5 catalog given by Anderson et al.. The SDSS spectra of in total 92 objects are analyzed by the same method used in our previous studies, after requiring the signal-to-noise ratio in the SDSS r' band is larger than 20. Combing the ROSAT-selected Seyfert galaxies with the composite AGNs reinforces the tight correlation between the line ratio [OI]/H\alpha vs. D_n(4000), and establishes a new tight correlation between [SII]/H\alpha vs. D_n(4000). Both correlations suggest the two line ratios are plausible age indicators of the circumnuclear stellar population for typical type I AGNs in which the stellar populations are difficult to be derived from their optical spectra. The ROSAT-selected Seyfert galaxies show that the two correlations depend on the soft X-ray spectral slope \alpha_X that is roughly estimated from the hardness ratios by requiring the X-ray count rates within 0.1-2.4 keV are larger than 0.02 counts s^-1. However, we fail to establish a relationship between \alpha_X and D_n(4000), which is likely caused by the relatively large uncertainties of both parameters (especially for \alpha_X because of the AGN intrinsic obscuration). The previously established L/L_Edd-D_n(4000) evolutionary sequence is reinforced again by the extension to the ROSAT-selected Seyfert galaxies. These X-ray-selected Seyfert galaxies are, however, biased against the two ends of the sequence, which implies that the X-ray Seyfert galaxies present a population at middle evolutionary stage.Comment: 31 pages, 9 figures, 2 tables, to be published in Ap

    CIV Emission and the Ultraviolet through X-ray Spectral Energy Distribution of Radio-Quiet Quasars

    Full text link
    In the restframe UV, two of the parameters that best characterize the range of emission-line properties in quasar broad emission-line regions are the equivalent width and the blueshift of the CIV line relative to the quasar rest frame. We explore the connection between these emission-line properties and the UV through X-ray spectral energy distribution (SED) for radio-quiet (RQ) quasars. Our sample consists of a heterogeneous compilation of 406 quasars from the Sloan Digital Sky Survey and Palomar-Green survey that have well-measured CIV emission-line and X-ray properties (including 164 objects with measured Gamma). We find that RQ quasars with both strong CIV emission and small CIV blueshifts can be classified as "hard-spectrum" sources that are (relatively) strong in the X-ray as compared to the UV. On the other hand, RQ quasars with both weak CIV emission and large CIV blueshifts are instead "soft-spectrum" sources that are (relatively) weak in the X-ray as compared to the UV. This work helps to further bridge optical/soft X-ray "Eigenvector 1" relationships to the UV and hard X-ray. Based on these findings, we argue that future work should consider systematic errors in bolometric corrections (and thus accretion rates) that are derived from a single mean SED. Detailed analysis of the CIV emission line may allow for SED-dependent corrections to these quantities.Comment: AJ, in press; 39 pages, 11 figures, 3 table

    Spatiotemporal requirements of the Hainan gibbon: Does home range constrain recovery of the world's rarest ape?

    Get PDF
    Conservation management requires an evidence-based approach, as uninformed decisions can signify the difference between species recovery and loss. The Hainan gibbon, the world’s rarest ape, reportedly exploits the largest home range of any gibbon species, with these apparently large spatial requirements potentially limiting population recovery. However, previous home range assessments rarely reported survey methods, effort or analytical approaches, hindering critical evaluation of estimate reliability. For extremely rare species where data collection is challenging, it also is unclear what impact such limitations have on estimating home range requirements. We re-evaluated Hainan gibbon spatial ecology using 75 hours of observations from 35 contact days over 93 field-days across wet (June 2011-September 2011) and dry (November 2010-February 2011) seasons. We calculated home range area for three social groups (N=21 individuals) across the sampling period, seasonal estimates for one group (based on 24 days of observation; 12 days per season), and between-group home range overlap using multiple approaches (Minimum Convex Polygon, Kernel Density Estimation, Local Convex Hull, Brownian Bridge Movement Model), and assessed estimate reliability and representativeness using three approaches (Incremental Area Analysis, spatial concordance, and exclusion of expected holes). We estimated a yearly home range of 1–2 km2, with 1.49 km2 closest to the median of all estimates. Although Hainan gibbon spatial requirements are relatively large for gibbons, our new estimates are smaller than previous estimates used to explain the species’ limited recovery, suggesting that habitat availability may be less important in limiting population growth. We argue that other ecological, genetic, and/or anthropogenic factors are more likely to constrain Hainan gibbon recovery, and conservation attention should focus on elucidating and managing these factors

    The Sloan Digital Sky Survey Quasar Catalog I. Early Data Release

    Get PDF
    We present the first edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog consists of the 3814 objects (3000 discovered by the SDSS) in the initial SDSS public data release that have at least one emission line with a full width at half maximum larger than 1000 km/s, luminosities brighter than M_i^* = -23, and highly reliable redshifts. The area covered by the catalog is 494 square degrees; the majority of the objects were found in SDSS commissioning data using a multicolor selection technique. The quasar redshifts range from 0.15 to 5.03. For each object the catalog presents positions accurate to better than 0.2" rms per coordinate, five band (ugriz) CCD-based photometry with typical accuracy of 0.05 mag, radio and X-ray emission properties, and information on the morphology and selection method. Calibrated spectra of all objects in the catalog, covering the wavelength region 3800 to 9200 Angstroms at a spectral resolution of 1800-2100, are also available. Since the quasars were selected during the commissioning period, a time when the quasar selection algorithm was undergoing frequent revisions, the sample is not homogeneous and is not intended for statistical analysis.Comment: 27 pages, 4 figures, 4 tables, accepted by A

    Physiological Correlates of Volunteering

    Get PDF
    We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29
    • …
    corecore