486 research outputs found

    Epigenetic aging and perceived psychological stress in old age

    Get PDF

    Can oral infection be a risk factor for Alzheimer’s disease?

    Get PDF
    Alzheimer’s disease (AD) is a scourge of longevity that will drain enormous resources from public health budgets in the future. Currently, there is no diagnostic biomarker and/or treatment for this most common form of dementia in humans. AD can be of early familial-onset or sporadic with a late-onset. Apart from the two main hallmarks, amyloid-beta and neurofibrillary tangles, inflammation is a characteristic feature of AD neuropathology. Inflammation may be caused by a local central nervous system insult and/or by peripheral infections. Numerous microorganisms are suspected in AD brains ranging from bacteria (mainly oral and non-oral Treponema species), viruses (Herpes simplex type I) and yeasts (Candida species). A causal relationship between periodontal pathogens/non-oral Treponema species of bacteria has been proposed via the amyloid-beta and inflammatory links. Periodontitis constitutes a peripheral oral infection that can provide the brain with intact bacteria and virulence factors and inflammatory mediators due to daily, transient bacteraemias. If and when genetic risk factors meet environmental risk factors in the brain, disease is expressed, in which neurocognition may be impacted, leading to the development of dementia. To achieve the goal of finding a diagnostic biomarker and possible prophylactic treatment for AD, there is an initial need to solve the etiological puzzle contributing to its pathogenesis. This review therefore addresses oral infection as the plausible aetiology of late onset AD (LOAD)

    An on-engine method for dynamic characterisation of NOx concentration sensors

    Full text link
    An on-engine method for dynamic characterisation of automotive NOx concentration sensors is presented. Steps in start of injection on a diesel engine are employed to achieve step-like NOx concentration variations on exhaust flow. On the basis of the sensor response, delay and dynamic response can be easily identified; the paper shows a simple least squares procedure although other models and identification techniques could be used. Application data is presented for three NOx sensors: a research-grade chemiluminescence exhaust gas analyser, and two different commercial ZrO2-based sensors. © 2010 Elsevier Inc.The authors thanks R. Lujan and G. Couture for their valuable contribution in the experimental part of the present work. This work has been partially supported by Ministerio de Ciencia y Tecnologia through Project PLANUCO No. TRA2006-15620-C02-02.Galindo, J.; Serrano Cruz, JR.; Guardiola, C.; Blanco-Rodriguez, D.; Cuadrado, I. (2011). An on-engine method for dynamic characterisation of NOx concentration sensors. Experimental Thermal and Fluid Science. 35(3):470-476. https://doi.org/10.1016/j.expthermflusci.2010.11.010S47047635

    Molecular mechanism regulating myosin and cardiac functions by ELC

    Get PDF
    The essential myosin light chain (ELC) is involved in modulation of force generation of myosin motors and cardiac contraction, while its mechanism of action remains elusive. We hypothesized that ELC could modulate myosin stiffness which subsequently determines its force production and cardiac contraction. We therefore generated heterologous transgenic mouse (TgM) strains with cardiomyocyte-specific expression of ELC with human ventricular ELC (hVLC-1; TgM(hVLC-1)) or E56G-mutated hVLC-1 (hVLC-1(E56G); TgM(E56G)). hVLC-1 or hVLC-1(E56G) expression in TgM was around 39% and 41%, respectively of total VLC-1. Laser trap and in vitro motility assays showed that stiffness and actin sliding velocity of myosin with hVLC-1 prepared from TgM(hVLC-1) (1.67pN/nm and 2.3{my}m/s, respectively) were significantly higher than myosin with hVLC-1(E56G) prepared from TgM(E56G) (1.25pN/nm and 1.7{my}m/s, respectively) or myosin with mouse VLC-1 (mVLC-1) prepared from C57/BL6 (1.41 pN/nm and 1.5+-0.03 {my}m/s, respectively). Maximal left ventricular pressure development of isolated perfused hearts in vitro prepared from TgM(hVLC-1) (80.0mmHg) were significantly higher than hearts from TgM(E56G) (66.2mmHg) or C57/BL6 (59.3+-3.9 mmHg). These findings show that ELCs decreased myosin stiffness, in vitro motility, and thereby cardiac functions in the order hVLC-1 > hVLC-1(E56G) ≈ mVLC-1. They also suggest a molecular pathomechanism of cardiomyopathies caused by hVLC-1 mutations

    PRediction of acute coronary syndrome in acute ischemic StrokE (PRAISE) – protocol of a prospective, multicenter trial with central reading and predefined endpoints

    Get PDF
    Background: Current guidelines recommend measurement of troponin in acute ischemic stroke (AIS) patients. In AIS patients, troponin elevation is associated with increased mortality and worse outcome. However, uncertainty remains regarding the underlying pathophysiology of troponin elevation after stroke, particularly regarding diagnostic and therapeutic consequences. Troponin elevation may be caused by coronary artery disease (CAD) and more precisely acute coronary syndrome (ACS). Both have a high prevalence in stroke patients and contribute to poor outcome. Therefore, better diagnostic algorithms are needed to identify those AIS patients likely to have ACS or other manifestations of CAD. Methods/design: The primary goal of the "PRediction of Acute coronary syndrome in acute Ischemic StrokE" (PRAISE) study is to develop a diagnostic algorithm for prediction of ACS in AIS patients. The primary hypothesis will test whether dynamic high-sensitivity troponin levels determined by repeat measurements (i.e., "rise or fall-pattern") indicate presence of ACS when compared to stable (chronic) troponin elevation. PRAISE is a prospective, multicenter, observational trial with central reading and predefined endpoints guided by a steering committee. Clinical symptoms, troponin levels as well as findings on electrocardiogram, echocardiogram, and coronary angiogram will be recorded and assessed by central academic core laboratories. Diagnosis of ACS will be made by an endpoint adjudication committee. Severe adverse events will be evaluated by a critical event committee. Safety will be judged by a data and safety monitoring board. Follow-up will be conducted at three and twelve months and will record new vascular events (i.e., stroke and myocardial infarction) as well as death, functional and cognitive status. According to sample size calculation, 251 patients have to be included. Discussion: PRAISE will prospectively determine the frequency of ACS and characterize cardiac and coronary pathologies in a large, multicenter cohort of AIS patients with troponin elevation. The findings will elucidate the origin of troponin elevation, shed light on its impact on necessary diagnostic procedures and provide data on the safety and diagnostic yield of coronary angiography early after stroke. Thereby, PRAISE will help to refine algorithms and develop guidelines for the cardiac workup in AIS. Trial registration: NCT03609385 registered 1st August 2018

    ACE2 gene expression is up-regulated in the human failing heart

    Get PDF
    BACKGROUND: ACE2 is a novel homologue of angiotensin converting enzyme (ACE). ACE2 is highly expressed in human heart and animal data suggest that ACE2 is an essential regulator of cardiac function in vivo. Since overactivity of the renin-angiotensin system contributes to the progression of heart failure, this investigation assessed changes in gene expression of ACE2, ACE, AT(1 )receptor and renin in the human failing heart. METHODS: The sensitive technique of quantitative reverse transcriptase polymerase chain reaction was used to determine the level of mRNA expression of ACE and ACE2 in human ventricular myocardium from donors with non-diseased hearts (n = 9), idiopathic dilated cardiomyopathy (IDC, n = 11) and ischemic cardiomyopathy (ICM, n = 12). Following logarithmic transformation of the data, a one-way analysis of variance was performed for each target gene followed by a Dunnett's test to compare the two disease groups IDC and ICM versus control. RESULTS: As anticipated, ACE mRNA was found to be significantly increased in the failing heart with a 3.1 and 2.4-fold up-regulation found in IDC and ICM relative to non-diseased myocardium. Expression of ACE2 mRNA was also significantly up-regulated in IDC (2.4-fold increase) and ICM (1.8-fold increase) versus non-diseased myocardium. No change in angiotensin AT(1 )receptor mRNA expression was found in failing myocardium and renin mRNA was not detected. CONCLUSIONS: These data suggest that ACE2 is up-regulated in human IDC and ICM and are consistent with the hypothesis that differential regulation of this enzyme may have important functional consequences in heart failure. This strengthens the hypothesis that ACE2 may be a relevant target for the treatment of heart failure and will hopefully spur further studies to clarify the functional effects in human myocardium of ACE2 derived peptides

    Analysis of sex and gender-specific research reveals a common increase in publications and marked differences between disciplines

    Get PDF
    Oertelt-Prigione S, Parol R, Krohn S, Preißner R, Regitz-Zagrosek V. Analysis of sex and gender-specific research reveals a common increase in publications and marked differences between disciplines. BMC Medicine. 2010;8(1): 70.© 2010 Oertelt-Prigione et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the CreativeCommons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    LRPAP1 autoantibodies in mantle cell lymphoma are associated with superior outcome

    Get PDF
    Low-density lipoprotein (LDL) receptor-related protein-associated protein 1 (LRPAP1) had been identified by B-cell receptor (BCR) expression cloning and subsequent protein array screening as a frequent and proliferation-inducing autoantigen of mantle cell lymphoma (MCL). Of interest, high-titered and light chain-restricted LRPAP1 autoantibodies were detected in 8 of 28 patients with MCL. In the present study, LRPAP1 autoantibodies in sera of patients treated within the Younger and Elderly trials of the European MCL Network were analyzed regarding frequency, association with disease characteristics, and prognostic impact. LRPAP1 autoantibodies were detected in 41 (13%) of 312 evaluable patients with MCL. These LRPAP1 autoantibodies belonged predominantly to the immunoglobulin G (IgG) class and were clonally light chain restricted (27 with kappa light chains, 14 patients with lambda light chains). Titers ranged between 1:400 and 1:3200. The presence of LRPAP1 autoantibodies was not significantly associated with any baseline clinical characteristic, however, it was associated with a superior 5-year probability for failure-free survival (FFS) of 70% (95% confidence interval [CI], 57% to 87%) vs 51% (95% CI, 44% to 58%), P = .0052; and for overall survival (OS) of 93% (95% CI, 85% to 100%) vs 68% (95% CI, 62% to 74%), P = .0142. LRPAP1-seropositive patients had a Mantle Cell Lymphoma International Prognostic Index-adjusted hazard ratio for FFS of 0.48 (95% CI 0.27-0.83, P = .0083) and for OS of 0.47 (95% CI 0.24-0.94, P = .032). LRPAP1 autoantibodies were frequently detected in a large cohort of MCL patients treated within prospective multicenter clinical trials. Our results suggest better outcomes for LRPAP1-autoantibody seropositive patients

    Lymphocyte predominant cells detect Moraxella catarrhalis-derived antigens in nodular lymphocyte-predominant Hodgkin lymphoma.

    Get PDF
    Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare lymphoma of B-cell origin with frequent expression of functional B-cell receptors (BCRs). Here we report that expression cloning followed by antigen screening identifies DNA-directed RNA polymerase beta' (RpoC) from Moraxella catarrhalis as frequent antigen of BCRs of IgD <sup>+</sup> LP cells. Patients show predominance of HLA-DRB1*04/07 and the IgVH genes encode extraordinarily long CDR3s. High-titer, light-chain-restricted anti-RpoC IgG1/κ-type serum-antibodies are additionally found in these patients. RpoC and MID/hag, a superantigen co-expressed by Moraxella catarrhalis that is known to activate IgD <sup>+</sup> B cells by binding to the Fc domain of IgD, have additive activation effects on the BCR, the NF-κB pathway and the proliferation of IgD <sup>+</sup> DEV cells expressing RpoC-specific BCRs. This suggests an additive antigenic and superantigenic stimulation of B cells with RpoC-specific IgD <sup>+</sup> BCRs under conditions of a permissive MHC-II haplotype as a model of NLPHL lymphomagenesis, implying future treatment strategies
    corecore