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ABSTRACT 20 

Alzheimer’s disease (AD) is a scourge of longevity that will drain enormous resources from 21 

public health budgets in the future. Currently, there is no diagnostic biomarker and/or 22 

treatment for this most common form of dementia in humans. AD can be of early familial-23 

onset or sporadic with a late-onset. Apart from the two main hallmarks, amyloid-beta and the 24 

neurofibrillary tangles, inflammation is a characteristic feature of AD neuropathology. 25 

Inflammation may be caused by a local central nervous system insult and/or by peripheral 26 

infections. Numerous microorganisms are suspected in AD brains ranging from bacteria 27 

(mainly oral and non-oral Treponema species), viruses (Herpes simplex type I) and yeasts 28 

(Candida species). A causal relationship between periodontal pathogens/non-oral Treponema 29 

species of bacteria has been proposed via the amyloid-beta and inflammatory links. 30 

Periodontitis constitutes a peripheral oral infection that can provide the brain with intact 31 

bacteria and virulence factors and inflammatory mediators due to daily, transient 32 

bacteraemias. If and when genetic risk factors meet environmental risk factors in the brain, 33 

disease is expressed, in which neurocognition may be exacerbated impacted, leading to the 34 

of dementia. To achieve the goal of finding a diagnostic biomarker and possible prophylactic 35 

treatment for AD, there is an initial need to solve the etiological puzzle contributing to its 36 

pathogenesis. This review therefore addresses oral infection as the plausible aetiology of late 37 

onset AD (LOAD). the plausible aetiology of the late-onset AD being an oral infection.  38 

___________________________________________________________________________ 39 
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Alzheimer’s disease (AD) is a neurodegenerative disease and the most common example of a 42 

group of diseases that manifest as dementia. It is associated with atrophy and specific 43 

neuronal death particularly in the hippocampal region of the brain (1).  Research into AD 44 

pathogenesis, has flagged two main categories of the disease. A: the familial-onset  onset 45 

that accounts for around 2% of all AD cases and the sporadic form of late-onset AD also 46 

to as LOAD that constitutes approximately 98% of the cases. LOAD displays genetic 47 

susceptibility traits of which the well-known risk factor is inheritance of the apolipoprotein 48 

(APOEɛ4) gene allele (2) and, appears to require an environmental factor for disease 49 

expression. For example a pathogen-host interaction, can exacerbate neurocognition in some 50 

elderly individuals who if in their 80+ years likely become diagnosed with LOAD (3, 4). The 51 

rationale for this review therefore is to try to explain the aetiology in the vast proportion of 52 

LOAD cases that relies upon common risk factors, and to date, .several. Several scientists 53 

these to be peripheral infections (5-11), and the accompanying systemic and local 54 

inflammatory mediators (11-13). Of these, the plausible risk from oral infection is the main 55 

focus of this review. 56 

   57 

PREVALENCE OF AD 58 

AD is a scourge burden of longevity resulting from the superior quality of health care 59 

This factor is likely to contribute to quadrupling of AD subjects living in our society during 60 

the next 40 years (14). It is estimated that by 2050 about 13-14 million people are likely to 61 

suffer from AD in the USA with a rise in the total costs estimated to be more than $1 trillion. 62 

The odds of having a diagnosis of AD when over 85 years of age exceed 1:3 (15). One in six 63 

people over 80 years in the UK have has dementia (16). Estimates for the prevalence of AD in 64 

USA indicate that more than 5 million individuals who are 65 years or older currently suffer 65 

from AD (1, 15). About 200,000 subjects have been diagnosed with the early-onset familial 66 
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AD form and health care costs for this disease are about $200 billion per year (1). It is clear 67 

that AD is fast becoming a major health challenge in the USA and around the globe that will 68 

financially drain public health budgets and care giver services. 69 

 70 

NEUROPATHOLOGICAL CHARACTERISTICS OF THE AD BRAIN 71 

The AD brain is characterized by several neuropathological features of which two seminal 72 

hallmarks (Fig. 1) arise from proteostasis of the ongoing neurodegenerative processes and are 73 

essential for a definitive diagnosis of the disease at post mortem (17). One of the hallmark 74 

proteins is made up of fibrils in the form of extracellular, insoluble plaques and consists 75 

primarily of amyloid-beta (Aβ) (18). These peptide deposits in variable sizes depend upon the 76 

secretase enzymes (α-, β - and ϒ-secretases) that cleave it from the longer amyloid precursor 77 

protein (APP). Initial reports suggested fibrillar Aβ to be neurotoxic (19) as it has been shown 78 

to kill all types of cells by apoptosis induction (20). However, there are two known insoluble 79 

fibrillar Aβ amyloid peptides comprised of Aβ40 and Aβ42 amino-acid residues as well as their 80 

different which exhibit distinct physiological states within the human brain. There is a general 81 

consensus among scientists that the larger (Aβ42) peptide is the neurotoxic form as the ageing 82 

brain of cognitive intact individuals also displays Aβ plaques. However, in the cognitively 83 

intact brain they are fewer in number and usually of the diffuse Aβ40 type that appears not to 84 

bear any, as yet known, pathological significance in the elderly who age successfully.. In 85 

monomeric, dimeric and the multimeric forms of Aβ (21). The relative neurotoxicity of these 86 

isoforms remains unclear It is not clear as to which one of these is more neurotoxic (22).  87 

More recently, the fibrillary forms of the Aβ(40/42) peptides released in the AD brain are were 88 

also recognized as “defensin” or innate immune defense molecules that act to protect the host 89 

against infection (23). For example, both of the aforementioned amyloidogenic peptides can 90 
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bind to bacterial membranes and in that way lyse bacterial cells. Although Aβ is acting as an 91 

antimicrobial peptide (AMP), it may be a part of the brain’s ancient/modern innate immune 92 

defense mechanism. AMPs are potent, broad-spectrum, pore-forming agents against targeting 93 

Gram-negative and Gram-positive bacteria, enveloped viruses and protozoans (23), thereby 94 

supporting the hypothesis that AD has an infectious origin.  95 

 96 

Furthermore, the senile plaques (Aβ42) are recognized as triggers that stimulate activation of 97 

microglial cells and initiate local immune responses (24). Activated microglia are the most 98 

important contributors of inflammation in the central nervous system (CNS) (25). They 99 

secrete a number of proinflammatory cytokines (24-26) and recognize pattern associated 100 

molecular patterns (PAMPs) on bacteria and their cellular debris (27-30) to deal with in 101 

response to CNS infection.  102 

The other pathological characteristic of AD is an accumulation of intracellular 103 

hyperphosphorylated tau and heat shock proteins constituting the neurofibrillary tangles 104 

(NFTs). Hyperphosphorylated tau protein alters the polymerization and stability of 105 

microtubules compromising their function (31). NFTs in AD reflect the severity of disease; 106 

however, the significance of pathogen-host interaction to the occurrence of NFTs in the AD 107 

brain is poorly understood. Current genetic evidence is pointing to aberrant innate immune 108 

responses (32, 33) and cholesterol lipid genes (see 34) having greater significance in AD 109 

pathogenesis. A dysfunctional immune system and predisposition to hyperlipidaemia also 110 

support the role of reduced blood flow due to the vascular lesions and inflammation, Aβ 111 

deposition and microorganisms in AD.   112 

In advanced AD pathology, synaptic dysfunction is another structural defect associated with a 113 

decline in memory (35-37). Although a circular argument, malnutrition plays a role in the 114 

gradual loss of synapses and fewer teeth during life is a known risk factor for AD (38). 115 
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Neurons are capable of responding to injury by expressing multiple neurotransmitters. In AD, 116 

selective loss of cholinergic neurons in the basal forebrain (39) also correlates with the loss of 117 

cognitive function (18, 35).  118 

 119 

THE AMYLOID CASCADE HYPOTHESIS  120 

Several hypotheses have been launched for advanced regarding the development of AD. The 121 

amyloid cascade hypothesis serves as a model particularly for the familial form of AD (40) 122 

which is a disease caused by mutations involving the amyloid-β protein precursor, located on 123 

chromosome 21 and presenilin 1 and 2 on chromosomes 14 and 1 respectively that enhance 124 

the APP gene processing towards Aβ deposition (41, 42). The model, which was first 125 

proposed by Glenner and Wong (43), maintains that the neurodegenerative disease is due to 126 

an imbalance between the generation and clearance of Aβ. Genome wide association studies 127 

(GWAS) highlighted the complement receptor 1 (CR1) gene playing a role in AD 128 

pathogenesis (44). One recognized role of CR1, a membrane bound regulatory protein, is its 129 

ability to bind C3b opsonins (Fig. 2). It is abundantly expressed especially on erythrocyte 130 

membranes and as such participates in immune complex clearance by transporting waste to 131 

the liver and the spleen. As the CR1 gene is a risk factor for LOAD, this suggests loss of 132 

function as a possibility for the defective clearance of Aβ in the brain. Other tentative 133 

explanations suggest variation in CR1 protein isoforms (longer and shorter forms) (45), 134 

whereby the longer form is somehow negatively less involved in the disease process via its 135 

ability to bind more C3b and facilitate more effective clearance of Aβ in the brain (46). This 136 

is a process that inevitably fails favouring disease expression with more Aβ proteostasis 137 

buildup and complement pathway activation. The amyloid hypothesis has been modified 138 

several times, particularly due to the finding that soluble oligomers of Aβ may contribute to 139 
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early preclinical stages of the disease that initiate the cascade leading to synaptic dysfunction, 140 

atrophy and neuronal loss (47).  141 

 142 

THE INFLAMMATORY HYPOTHESIS  143 

The intrinsic model 144 

Currently there are two models of the inflammatory hypothesis of AD, an intrinsic and an 145 

extrinsic. The intrinsic inflammation model accounts for the intact “blood-brain barrier” 146 

(BBB) restricting entry of neurotoxic immune molecules and systemic lymphocytes to the 147 

brain.  As a consequence, the brain glial cells are able to generate a local and complete innate 148 

immune system when challenged by foreign agents (26, 48-50). Historically, 149 

neuroinflammation has largely been viewed as being a downstream consequence of the 150 

amyloid hypothesis, whereby the presence of amyloidogenic peptides result in the activation 151 

of microglia initiating pro-inflammatory cascades and the release of potentially neurotoxic 152 

substances resulting in degenerative changes in neurons. GWAS now implicates innate 153 

immune genes (44, 51) as being a risk factor and supports a primary role for the inflammatory 154 

elements of AD pathology via inappropriate activation of the complement system (52-54) in 155 

association with Aβ plaques and NFTs (55).  156 

 157 

The extrinsic model 158 

The extrinsic model accounts for communication of the glial cells with the immune challenges 159 

presented via the blood vascular system using the circumventricular organs and the choroid 160 

plexus that are devoid of the BBB (56). The cells from this region of the brain are fully 161 

equipped with the CD14 receptor and the toll-like receptor 4 (TLR 4) to recognise recognize 162 

the peripheral blood circulation (27, 28). Hence, elements of systemic infections such as those 163 
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originating from Gram-negative, highly virulent oral pathogens, bronchopneumonia and 164 

urinary tract infections (3, 4, 7, 57, 58) reach all organs including the CNS. The consequences 165 

products entering the bloodstream trigger the are that the innate immune responses of hosts’ 166 

pattern recognition receptors (PPR) and TLRs via pattern recognition receptors (PRR) and 167 

infectious threat by secreting to the threat of infection by secreting immune mediators 168 

agents. Increased risk of dementia in the elderly following multiple infectious episodes has 169 

been reported It is reported that multiple episodes of infections in the elderly likely end up 170 

being diagnosed with dementia (4). In addition, systemic infections appear to contribute 171 

towards delirium in some clinically diagnosed AD patients and such episodes can exacerbate 172 

a premorbid cognitive status (3). Holmes et al. proposed that since cytokines are primary 173 

mediators released by the host to defend against infection, such secondary stimuli (IL-1β and 174 

TNF-α) may mediate their effect on the brain and indirectly contribute to cognitive decline (3, 175 

57).  176 

 177 

NON-ORAL BACTERIA RELATED TO AD 178 

Honjo et al. (59) using Bradford Hill’s criteria for assessing the relationship between bacteria 179 

and disease found Chlamydophila pneumoniae to be a likely infectious agent related to the 180 

pathogenesis of AD. Maheshwari and Eslick (60) reported a strong correlation between C. 181 

pneumoniae and AD, and according to Shima et al. (61) C. pneumoniae is currently the most 182 

plausible of all infectious agents proposed to be involved in AD. Lim et al. (62) suggested that 183 

the pro- and chronic inflammatory states in AD pathogenesis may in part be due to C. 184 

pneumoniae infection of monocytes. C. pneumoniae antibodies from typical intracellular and 185 

atypical C. pneumoniae antigens have been identified both from typical intracellular and 186 

of the brains from AD patients (63). Amyloid deposit and NFTs were detected in the same 187 
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regions in apposition to one another suggesting that C. pneumoniae infection is involved in 188 

the development of AD pathology. 189 

Using various techniques Balin et al. (9) found C. pneumoniae in 80-90% of LOAD brain 190 

tissue specimens. C. pneumoniae infection was correlated with the APOEɛ4 allele expression. 191 

The same researchers subsequently demonstrated that astroglia, microglia, neurons, 192 

endothelial cells and monocytes in the LOAD brain are permissive to this bacterium. The 193 

mechanisms of pathogenesis differ between actively- and persistently-infecting chlamydiae 194 

and it is in the persistent state that these organisms cause chronic disease (64, 65). C. 195 

pneumoniae was cultured from two AD brain samples after one or two passages in HEp-2 196 

cells (66). Interestingly, the study indicated that brain isolates were more related to respiratory 197 

than to vascular/atheroma strains of C. pneumoniae. This suggested that C. pneumoniae 198 

infection of the brain was secondary to bronchopneumonia and at the end stages of LOAD. 199 

It has been suggested that the phages phiCPAR39 and phiCPG1, associated with C. 200 

pneumoniae, may enter mitochondria of the bacterial host and work as slow viruses initiating 201 

AD (67). These authors hypothesized that mitochondrial recruitment by C. pneumoniae 202 

phages may be the primary initiating event in the pathogenesis of neurodegenerative 203 

disorders. 204 

In a meta-analysis based on 25 relevant, primarily case-control studies Maheshwari and Eslick 205 

(60) found a statistically significant association between AD and detectable evidence of 206 

infection caused by C. pneumoniae or spirochetes. They reported over a ten-fold increased 207 

occurrence of AD when there was evidence of spirochetal infection (OR: 10.61; 95% CI: 208 

3.38-33.29) and over a four-fold increased occurrence of AD with a conservative risk estimate 209 

(OR: 4.45; 95% CI: 2.33-8.52). There was a five-fold increase in occurrence of AD with C. 210 

pneumoniae infection (OR: 5.66; 95% CI: 1.83-17.51). Accordingly, a strongly positive 211 
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association between bacterial infection and AD was shown for both types of bacteria, but it 212 

was strongest for spirochetes. 213 

It is generally accepted that the syphilis spirochete Treponema pallidum can cause chronic 214 

neuropsychiatric disorders including dementia as well as other neurodegenerative disorders 215 

(11). T. pallidum causes brain atrophy and Aβ deposition in the atrophic form of general 216 

paresis (68, 69) and is a strong indication for involvement of spirochetes in AD pathogenesis. 217 

Chronic diseases such as syphilis are frequently associated with deposition of amyloid (68, 218 

69). Actually, amyloid is considered as Amyloid is an integral part component of spirochetes 219 

which may contribute to amyloid deposition in AD (70). Syphilis accumulation of spirochetes 220 

Spirochete accumulation in the cerebral cortex in the context of syphilis will also lead to 221 

formation of senile plaques, NFTs and granulovacuolar degeneration (71).  222 

Miklossy (68, 69) analyzed data on the ability of spirochetes to induce pathological and 223 

biological hallmarks of AD in vitro following Koch’s and Hill’s postulates and demonstrated 224 

a plausible causal relationship between neurospirochetosis and AD. The data revealed a 225 

statistically significant association between spirochetes and AD (P = 1.5 x 1017, OR = 20, 226 

95% CI = 8-60, N = 247).  When mammalian cells were exposed to spirochetes, the 227 

pathological and biological hallmarks of AD were reproduced in vitro (68, 69). Miklossy (72) 228 

also found that historical Historical observations supported the conclusion that  that 229 

observations paved the way for drawing conclusions such as chronic spirochetal infections 230 

can cause dementia and reproduce the neuropathological hallmarks of AD (72). According to 231 

Miklossy (72), these observations represent further evidence in support of a causal 232 

relationship between various spirochetal infections and AD. 233 

Another spirochete also implicated in AD is, Borrelia burgdorferi, has also been implicated in 234 

AD. This is the causative agent of Lyme disease  which is which is transfected to humans via 235 
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tick vectors through infected tick bites. There are great similarities in the clinical and 236 

syphilis and Lyme disease (72, 73). The occurrence of B. burgdorferi in the brains of AD 237 

patients was first reported by MacDonald and Miranda (74) and was confirmed later by 238 

MacDonald (75, 76), Riviere et al. (5) and Miklossy et al. (77). Interestingly, Bu et al. (78) 239 

found that the infectious burden consisting of B. burgdorferi, C. pneumoniae, Helicobacter 240 

pylori, cytomegalovirus cytomegalo virus and Herpes simplex-1 (HSV-1) is associated with 241 

Gutacker et al. (79) and Pappolla et al. (80) found no evidence for an association between B. 242 

burgdorferi and AD. 243 

Among other bacterial species, H. pylori alone (monoinfection) has been found to be related 244 

to AD (59). These authors suggested that AD pathology can be initiated and exacerbated by 245 

some microorganisms with inflammatory and oxidative responses which may affect the brain 246 

continuously and gradually over time. However, the H. pylori status did not depend on was 247 

not associated with AD in a study from Japan, probably due to the high prevalence of the 248 

organism in controls (81). This was refuted by Kountouras et al. (82) who had previously 249 

found that successful eradication of  H. pylori infection was associated with significantly 250 

lower mortality risk in AD patients [HR (95% Cl)=0.287 (0.114-0.725), p=0.008] (83). 251 

 252 

ORAL BACTERIA RELATED TO AD 253 

The oral cavity harbours an impressive range of bacterial phylotypes (84). Molecular 254 

identification methods have detected close to 900 different predominant bacterial species of 255 

which 35% cannot yet be cultured (85). The oral microbiome profiles appear to be 256 

individualized (86), meaning that bacterial microbiomes can vary both qualitatively and 257 

quantitatively between individuals, although there are also significant overlaps. Each 258 

individual can harbour harbor up to 200 different bacterial taxa in their mouth and there is a 259 
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variation in the microbiota in different oral sites (84, 87). Furthermore, the composition of the 260 

oral microbiota irrespective of being indigenous or pathogenic in the oral cavity keeps 261 

changing in view of major oral diseases (caries, gingivitis, aggressive and chronic 262 

periodontitis, periodontal-endodontic lesions, peri-implantitis and mucositis) (88-94). 263 

Particularly plaque-induced oral diseases such as periodontitis are associated with a change in 264 

the oral microbiota. There is a predominance of anaerobic bacteria in the oral cavity. Many of 265 

the major periodontal microorganisms are anaerobic, e.g., Porphyromonas gingivalis, 266 

Treponema denticola and Tannerella forsythia. The abundance of anaerobes tend to increase 267 

with the development of plaque-induced oral diseases.  268 

 269 

Periodontal bacterial pathogens are related to AD 270 

Major pathogens of chronic periodontitis such as P. gingivalis, T. forsythia, and T. denticola 271 

are implicated in the development of several inflammatory diseases at remote organ sites. 272 

Except for T. forsythia, all the above three of the above-named organisms of which T. 273 

denticola represents a spirochetes, have been found in the AD brain (5, 8). Spirochetes are 274 

strongly neurotropic. They can spread along nerve fibers and via lymphatics (67, 68) and have 275 

been detected in the trigeminal nerve and trigeminal ganglia (95). Spirochetes and their 276 

antigens as well as DNA have been found associated with AD and are strongly implicated as 277 

the causative agents leading to dementia (68, 69). In 14 studies spirochetes were detected in 278 

AD by different authors in different laboratories and countries by means of different 279 

techniques (for a reviews see Miklossy (68, 69). Riviere et al. (5) demonstrated the presence 280 

of seven different oral Treponema species in 14 out of 16 AD brain specimens (Fig. 3). 281 

Spirochetes were even cultivated from the brains of AD patients indicating that they were 282 

viable in the brain (67, 68, 77). Miklossy suggested a co-infection by several spirochetes in 283 

Commented [PB5]: Agree with reviewer that a photograph 
of spirochetes in brain tissue is advantageous.   



13 
 

AD including the oral varieties (T. socranskii, T. pectinovorum, T. denticola, T. medium, T. 284 

amylovorum and T. maltophilum) as demonstrated by Riviere et al. (5). Spirochetes 285 

reproduced the biological and pathological hallmarks of AD after exposure of mammalian 286 

neuronal and glial cells in organotypic cultures (68, 69). 287 

It has been was demonstrated that LPS from periodontal bacteria can access the AD brain 288 

during life as while detection in corresponding controls, with equivalent or longer postmortem 289 

interval was absent (8). This study supports the literature on elevated antibodies to periodontal 290 

disease-associated bacteria such as P. gingivalis, being found in AD patients (7). Furthermore, 291 

in 2,355 people 60 years and over, the third NHANES study found associations between 292 

periodontitis and cognitive impairment and between measures of immunoglobulin to P. 293 

gingivalis and cognitive test performance (96, 97) used cohort methodology analyzing serum 294 

levels of antibodies to periodontal disease. All In this study all participants were cognitively 295 

intact at baseline. Those who went on to develop AD had higher levels of serum antibodies to 296 

periodontal pathogens at baseline. This The study sugggested suggested a temporal 297 

periodontal disease came before AD.   298 

Other important periodontal pathogens related to AD are Fusobacterium nucleatum and 299 

Prevotella intermedia. In the NHANES study antibody Antibody levels to these organisms 300 

were significantly increased (α = 0.05) at baseline serum in patients with AD compared to 301 

controls (97). The results were significant after controlling for baseline age, Mini-Mental 302 

State Examination score, and allele APOEɛ4 status. Noble et al. (98) found that a high anti-303 

Actinomyces naeslundii titer (> 640 ng/ml, present in 10% of the subjects) was associated 304 

with increased risk of AD (HR = 2.0, 95% CI: 1.1-3.8). This association was stronger after 305 

adjusting for other significant titers (HR = 3.1, 95%CI: 1.5-6.4) and confirmed that periodontal 306 

pathogens can may be associated with AD. 307 
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 308 

Possible consequences to the brain of carrying oral bacterial pathogens  309 

The fact that inflammation is sustained in the AD brain suggests that local immunogenic 310 

hallmark proteins and/or peripheral infections are key perpetrators. This is supported by 311 

reports highlighting microorganisms and their toxic products as well as DNA in brain tissue 312 

of AD patients and experimental animals (see later below). Bacteria activate pathways that 313 

include the integrin receptor CR3 (CD11b/CD18) and TLR signalling (99) and the 314 

complement cascade (100). The NF-κB signalling pathway for cyto/chemokine release (TNF-315 

α, IL-8) (101) produces free radicals, nitric oxide triggers and apoptosis (102). The oral 316 

cavity, lungs and gastrointestinal and urinary tracts are plausible sources of brain 317 

microorganisms. The likely passage of the microorganisms of interest from their original sites 318 

to the brain is described below. 319 

Infections with spirochetes can cause cerebral hypoperfusion (103), cerebrovascular lesions 320 

and a severely disturbed capillary network (68, 69).  Chronic spirochetal infections can also 321 

induce slowly progressive dementia, cortical atrophy, chronic inflammation and Aβ 322 

deposition, which cannot be distinguished indistinguishable from that occurring in AD brains 323 

(for reviews see 68, 69, 72). Furthermore, cultured neuronal cells exposed to spirochetes 324 

produce Aβ (104). Spirochetes are also able to form plaque-, tangle- and curly fiber-like 325 

lesions (72, 105). They induce a latent and slowly progressive infection by evading host 326 

defenses. This promotes their survivial and proliferation in the brain by blocking the 327 

complement cascade. Spirochetes may even survive and proliferate in hosts that are immune-328 

competent.  By evading host’s defenses, spirochetes induce a latent and slowly progressive 329 

infection to promote their survival and proliferation in the brain and by blocking the 330 

complement cascade spirochetes may survive and proliferate even in hosts that are immuno-331 

competent. Interestingly, the remarkable ability of T. pallidum to evade clearance from the 332 
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immune system has earned it the designation “stealth pathogen” (106). Also anThe activated 333 

complement cascade can be seen following spirochete infections (11) which may be used as a 334 

non-specific marker of CNS inflammation. Spirochete-host interactions initiate and sustain 335 

chronic inflammation triggering various immune responses that activate and end up with 336 

various immune responses activating the innate and adaptive immune system, free radicals 337 

production, apoptosis and amyloid deposition typically seen in AD brains (107).  338 

P. gingivalis has been designated as one of the “keystone” periodontal pathogens because it is 339 

able to establish and maintain the periodontal disease-associated “inflammophillic” 340 

microbiota (108). It is able to perform this task as it possesses an awesome variety of 341 

virulence factors, recently reviewed by Singhrao et al. (109), to evade the host immune 342 

defenses, thus serving two major functions: initially for survival of P. gingivalis itself via a 343 

sustainable inflammatory milieu and then to satisfy its sustainment of nutritional sources by 344 

eliminating microbial competitors needs and to stamp out competition (108).  345 

The P. gingivalis endotoxin LPS demonstrates differences in the number of phosphate groups 346 

together with both the amount of lipid A fatty acids and their specific position. The presence 347 

of multiple lipid A structures makes it more difficult for the innate host responses to recognise 348 

recognize the molecule thereby aiding the virulence of P. gingivalis (110). The consequences 349 

of finding P. gingivalis LPS in the host’s body, e.g. the brain (8), are include priming of 350 

cells for differential activation of the TLR-mediated NF-κB signalling pathway (111) leading 351 

to cytokine liberation, complement activation and maintenance of intracerebral inflammation. 352 

P. gingivalis evades circulating phagocytes by adhering to erythrocytes (112). An active 353 

invasion of P. gingivalis and infection-induced complement activation with bystander neural 354 

injury was detected in the brains of ApoE-/- mice (113). This supported previous notions that 355 

bacterial infections can contribute to the development of AD pathology via mechanisms 356 



16 
 

involving acute phase proteins such as cytokines and the complement cascade where neurons 357 

would be attacked.  358 

 359 

ORAL VIRUS RELATED TO AD 360 

Herpes simplex virus (HSV) is present in more than 70% of the population after 50 years age 361 

(114-116). It persists latently in the peripheral nervous system and is periodically reactivated. 362 

Characteristically, HSV-1 has been designated as the enemy within (10). Herpes viruses, 363 

including Epstein-Barr virus and cytomegalo virus, are found in high copy counts in 364 

aggressive periodontitis, and may interact synergistically with periodontopathic bacteria in the 365 

pathogenesis of this disease (117). Periodontal infections activated by Herpes virus Herpes 366 

virus active periodontal infections may impair local host defenses and thus increase the 367 

aggressiveness of resident periodontopathic bacteria. The bacteria, in turn, may augment the 368 

virulence of the herpes viruses.  369 

High proportions of viral-associated proteins in amyloid-containing plaques and/or NFTs 370 

corroborate with the involvement of HSV-1 in AD pathology (118). This supports a study by 371 

Notably, De Chiara et al. (119) who found reported an association between Aβ accumulation 372 

in the brain and HSV infection. Itzhaki et al. (120) suggested that not only does HSV-1 373 

produce the main components of amyloid plaques and NFTs (i.e. Aβ and 374 

hyperphosphorylated tau), but it also interferes with the autophagic events that prevent 375 

degradation of these proteins and eventually leading to their accumulation in the AD brain. 376 

Further, in vitro and in vivo investigations using mouse in murine models following HSV-1 377 

demonstrated Aβ accumulation (121).  378 

A number of scientists have suggested that there is imbalance between production and 379 

clearance of β-amyloid in the brain, a thought premise first proposed by Wisniewski et al. 380 
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on the discovery of soluble species of this protein and later confirmed by Zlokovic et al. (123) 381 

(123) to be the case. Thus it It is now widely accepted that defective clearance of this protein 382 

brains that leads leading to its accumulation in the form of insoluble Aβ40/42 plaques. 383 

and cytomegalovirus have been detected in the brains of older adults with and without AD 384 

(124-126), HSV-1 viral DNA is present in a higher proportion of AD patients (127). It is 385 

particularly seen in the temporal and frontal cortices which are the brain regions that are most 386 

damaged in AD (128, 129). The relevance of this association is still under investigation; 387 

however a plausible role for the HSV-1 viral DNA could be in associated with the plaque 388 

maturation process. Jamieson et al. (127) found that the virus was absent from the brains of 389 

most young people, probably because it enters the brain during old age either when the 390 

senescence (130) or the virus itself is initially responsible for weakening the host’s immune 391 

defenses first. This latter explanation is likely and is supported by us and others (131).  392 

HSV-1 is a strong risk factor for AD in the brains of those with the APOEɛ4 allele (125, 132). 393 

This virus is not only a dormant passenger but can persist in the latent form in neurons or 394 

replicate at a very low level in neuroglia (133). During persistence it may release toxic 395 

products continuously and induce pro-inflammatory cytokines at low levels which become an 396 

additional burden to the a host who is already challenged by age, poor diet, failing restricted 397 

exercise as well as any genetic susceptibilities. Itzaki and Wozniak (10) suggested that stress 398 

or peripheral infection can reactivate the virus periodically from latency in the brain. This 399 

may cause an acute but presumably localized infection, and subsequent damage modulated by 400 

the APOɛ gene can lead to formation of Aβ plaques and NFTs. 401 

The presence of anti-HSV IgM, a sign of reactivated infection, almost doubled the risk for AD 402 

while anti-HSV IgG did not influence the risk (134). Kobayashi et al. (135) suggested that the 403 

anti-HSV-1 Ig antibody avidity index could be a useful biomarker for early diagnosis of 404 
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anamnestic mild cognitive impairment, which is prodromal to AD, as well as for AD 405 

sufferers. 406 

Reactivation of HSV seropositivity is highly correlated with incident-AD (136). Letenneur et 407 

al. (136) speculated that AD pathology starts many years before frank dementia and recurrent 408 

reactivation of HSV can act as a potent stimulus to brain microglia, increasing cytokine 409 

levels, and triggering a positive feedback cycle leading to increasing accumulation of 410 

neurohistopathological changes. In other words, infection, followed by local CNS 411 

inflammatory reaction is the likely primary occurrence stimulus wheras proteostasis is a 412 

consequence of the primary event leading to the development of AD. 413 

Hill et al. (137) suggested a role for HSV-1-induced miRNA-146a in the evasion of HSV-1 414 

from the complement system. which This which is a major first-line host defense mechanism, 415 

and the activation of key elements in the arachidonic acid cascade known to contribute to AD-416 

type neuropathological changes. 417 

 418 

ORAL YEASTS RELATED TO AD 419 

Oral yeast infection is represents a secondary opportunistic infection disease of the diseased 420 

where particularly involving Candida albicans, but increasingly also non-albicans species, 421 

e.g. Candida glabrata are involved. With a growing population of elderly, severe systemic 422 

fungal infections have increased dramatically in this age group during the last 30 years (138, 423 

139). Oral yeasts can be found in periodontal pockets, in root canals, on the mucosae and 424 

underneath dentures (denture stomatitis) (140-142). Denture stomatitis is prevalent in elderly 425 

wearing dentures that are heavily contaminated with yeasts which can be a source of systemic 426 

mycosis (Fig. 3). Disseminated mycoses have recently been reported in AD patients (143, 427 
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144). Fungal molecules including proteins and polysaccharides [(1,3)-β-glucan] were detected 428 

in peripheral blood serum, and fungal proteins and DNA were demonstrated by PCR in brain 429 

tissue of AD patients. Also chitinChitin-like fungal structures have also been found in the AD 430 

brain (145) and chitinase activity has been proposed as a powerful biomarker of AD (146). 431 

Immunohistochemical analyses revealed, albeit in a few cells, in In AD brains,  , containing 432 

cytoplasmic material in a small number of cell cells were was targeted by antibodies with 433 

immunoreactivity to that immunoreacted with antibodies raised against some yeast cells 434 

(147). These findings were consistent with the idea that neurons can be infected by fungi. 435 

Interestingly, antifungal treatment reversed the clinical symptoms of some AD patients (148, 436 

149). 437 

 438 

HOW DO ORAL MICROORGANISMS REACH THE BRAIN? 439 

Blood stream dissemination 440 

The most likely pathway of for dissemination for of oral microorganisms to the brain is 441 

through the blood stream (150). Dental treatment procedures as well as brushing, flossing, 442 

chewing and use of tooth picks in a patient with periodontitis will release a bacteraemia (151). 443 

This can occur several times during the day and has been estimated to last for up to 3 hours 444 

for oral bacteria (152). The bacteraemia is usually taken care of contained by immune cells of 445 

the body. However, in people with reduced immune defense, e.g. older individuals, bacteria 446 

may settle down within localize to crevices of the oral cavity and vascular channels (150).  447 

The blood- brain barrier 448 

An intact blood-brain barrier (BBB) prevents microorganisms in the blood from accessing the 449 

brain. However, aging favors overgrowth of oral microorganisms, particularly anaerobic 450 

bacteria and facultative yeasts that established earlier in life and provoked pro-inflammatory 451 
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responses that weakened the BBB (16). ActuallyNotably, magnetic resonance imaging (MRI) 452 

confirmed loss of BBB integrity in a mouse model of disseminated candidosis (153). Loss of 453 

integrity allows microorganisms to spread through the blood stream and quietly contribute in 454 

the pathogenesis of AD. During immunosenescence, the innate immune system gradually 455 

takes over for the acquired immune system. This contributes to a rise in circulating 456 

proinflammatory cytokines such as TNF-α (16).  Indeed, proinflammatory mediators can 457 

cross the BBB (3, 7, 154). APOEɛ4, TNF-α  and perhaps Ephrin Type-A Receptor 1 (EphA1) 458 

may influence BBB integrity and thus be important for penetration of bacteria, LPS and other 459 

toxic bacterial products as well as yeasts into the brains of AD patients (16).  APOEɛ4 affects 460 

the integrity of the BBB by activating the cyclophilin A matrix metalloproteinase MM-9 461 

pathway (155). 462 

 It is also plausible to suggest that the permeability of the BBB increases with age and thus 463 

promotes AD pathogenesis making the brain accessible to microorganisms. Mice with a 464 

mutation in the amyloid precursor protein gene which is related to early-onset AD in man, 465 

showed increased permeability of the BBB and increased formation of senile plaque as 466 

compared to control mice (156). The changes increased with age.  467 

 468 

Circumventricular organs and perivascular spaces 469 

Circumventricular organs (permit polypeptide hypothalamic hormones to leave the brain 470 

without disrupting the BBB) are not dependent on the BBB (56) and may act as another entry 471 

portal to the brain for bacteria (157).  Poole et al. (8) postulated that bacteria and their 472 

products may also directly access the brain via the systemic circulation through the 473 

perivascular spaces.  474 

     475 
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The olfactory hypothesis 476 

The “olfactory hypothesis” suggests the olfactory tract as a potential route for pathogenic 477 

bacteria to enter the brain and thereby trigger the production of Aβ and NFTs (158). The 478 

olfactory and trigeminal nerves are known to be used by periodontal pathogens to bypass the 479 

BBB for direct passage to the CNS (5, 150, 159, 160). Identification of oral treponemes in the 480 

trigeminal ganglia supports such a route of dissemination (5). Further, sSpirochetes may also 481 

spread along the fila olfactoria and tractus olfactorius (68, 69).  482 

Olfactory unsheathing cells (OECs) engulf bacteria and migrate towards TNF-α released by 483 

activated astrocytes (161). Therefore, OECs could be a vehicle for transporting live bacteria to 484 

the brain (i.e., Trojan horse). The olfactory bulb was the first area where NFTs and Aβ 485 

deposition were detected in the neuropathological trajectory of AD in humans (162) and in 486 

mouse models of AD (163). 487 

 488 

GENETIC, NUTRITIONAL AND ENVIRONMENTAL FACTORS PROMOTING AD 489 

While early-onset AD is genetically determined, LOAD is thought to result from interaction 490 

between genetic and environmental factors (12). Several mutated genes are associated with 491 

the familial AD, such as the amyloid beta (Aβ) precursor protein (AβPP) gene and the 492 

presenelin-1 (PSEN-1) and PSEN-2 gene (164-166). A major risk factor for LOAD is 493 

polymorphism in the APOɛ4 allele (2). Also cytokine-related genes seem to be involved in the 494 

susceptibility to inflammation in both LOAD (167, 168) and periodontitis (169-171). Thus, 495 

polymorphisms that increase TNF-α also increase the risk of both AD and periodontitis (172, 496 

173). Lambert et al. (174) found that 20 different loci can increase host susceptibility to AD 497 

including polymorphisms in genes associated with interleukin-1 (IL-1) (71, 175-178) and 498 

TNFα (71, 172, 179-181). The APOɛ4 gene which is one of these 20 loci is highly correlated 499 
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with AD (182) but it is also a risk factor for infection and increases the expression of 500 

inflammatory mediators (11). Recently, genetic overlap between AD, C-reactive protein 501 

(CRP) and plasma lipids was demonstrated by using summary statistics from GWAS of over 502 

200,000 individuals (183). There may also be interplay between genetic risk and 503 

environmental risk factors such as toxins and or bacterial, viral and fungal pathogens in 504 

LOAD reflecting its complex and multifactorial etiology (1). 505 

Diet with its content of essential B-vitamins, phospholipids and other micronutrients are 506 

important for forming new nerve synapses (184). Nutritional deficiencies are common both in 507 

elderly and in dementia subjects as briefly discussed by Singhrao et al. (150). 508 

 509 

ASSOCIATION BETWEEN CHRONIC PERIODONTAL DISEASE AND AD 510 

There is increasing evidence for an association between chronic periodontitis and LOAD 511 

(185). Cross-sectional and longitudinal studies have demonstrated that gingival bleeding, loss 512 

of periodontal attachment, periodontal probing depth, alveolar bone loss and antibodies to 513 

periodontal pathogens are significantly associated with lower cognitive function and decline 514 

after adjustment for co-variates (for a review see (12)). Acute phase proteins, including 515 

cytokines are possible indirect links between periodontal pathogens and/or their virulence 516 

factors (12, 13). Elderly often show neglect of oral hygiene (Figs. 3-5) which can stimulate 517 

recurrent chronic oral infection (150). This again promotes inflammation which can lead to 518 

confusion and dementia (3, 4, 154). In 152 subjects 50-70 years of age who were followed for 519 

20 years, greater levels of periodontal inflammation correlated with lower cognitive levels 520 

(186). Furthermore, gingival bleeding and loss of periodontal attachment apparatus were 521 

associated with cognitive impairment in a cohort of 5,138 people aged 20-59 years (187). In 522 

144 nuns, those with encoding APOEɛ4 and who had fewer teeth had experienced more rapid 523 



23 
 

decline than those with neither or either of these risk factors (188). Clinical and 524 

epidemiological studies showed that loss of teeth is associated with poor memory (6, 96, 187, 525 

189). In another study with of 597 community dwelling men followed for 32 years, tooth loss, 526 

increasing periodontal pockets depths and progression of alveolar bone loss were associated 527 

with impaired cognition particularly in those over 45 years of age (190). Recently, de Souza 528 

Rolim et al. (191) found that periodontal infections were more frequent in patients with mild 529 

AD than in healthy subjects. Another interesting feature related to the pathogenesis of AD is 530 

the low level of infection by “commensals on the loose” (16). These “immuno-tolerated” 531 

bacteria may silently multiply in sites outside of their primary niche and an ongoing illness 532 

at their secondary location may have significant deleterious effects upon the health of the 533 

elderly or demented host with an existing immunocompromised status.  534 

 535 

PUTATIVE TREATMENT AND PROPHYLAXIS OF AD 536 

There is no effective treatment or prophylaxis yet for AD, but several approaches have been 537 

proposed. Efforts in this respect are important. If we could delay onset of dementia by only 2 538 

years we might lower the prevalence of AD by more than 22 million cases over the next 40 539 

years (14). Indeed, delaying the disease process is a better option as the NotableyNotably, the 540 

of the APOEɛ4 allele in the very old (90+) age group, appears to confer protection (192), 541 

having bypassed a period of being at risk around 85+ years of age. 542 

If periodontal disease is implicated in AD, periodontitis prophylaxis should be feasible could 543 

be of help. It would be interesting to see if this has any effect on the initiation and aggravation 544 

of AD but an observation period of decennia is probably needed. 545 

In a study of subjects with mild to moderate AD, a A 3-month course of doxycycline and 546 

rifampicin reduced cognitive deterioration in during a 6 months’ follow-upfollow-up interval 547 
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study in subjects with mild to moderate AD (193). It was concluded that use of antibacterial 548 

the treatment of C. pneumoniae but had a beneficial effect on cognitive decline in AD (193). 549 

This might be related to prevention or attenuation of a number of peripheral infections or 550 

dampening down the proinflammatory cytokine response. MinicyclineMinocycline was found 551 

early, pre-plaque neuroinflammation and inhibit the APP cleaving enzyme 1 (BACE-1) in a 552 

transgenic model of Alzheimer's disease-like amyloid pathology (194). It was suggested that 553 

interfering with inflammation could be a useful therapeutic approach in early, pre-plaque 554 

stages of AD-like amyloid pathology. 555 

Anti-inflammatory drugs given for at least 2 years before the onset of dementia delayed the 556 

disease process (194195-196197). It may also be beneficial to combine anti-inflammatory 557 

antibacterials (193). Examination of several available Non-steroidal Anti-Inflammatory Drugs 558 

(NSAIDs) showed that only a few of them had any useful Aβ-modifying or other activity of 559 

therapeutic use in LOAD (for a review see (1)).  560 

Itzhaki and Wozniak (10, 197198) suggested that antiviral therapy and perhaps vaccination 561 

against HSV-1 in early life could be useful. If HSV-1 is implicated in AD, vaccination could 562 

prevent the excessive accumulation of Aβ in the brain. Vaccination with mixed HSV 563 

glycoproteins prior to HSV infection protected against viral latency in mouse brains (198199). 564 

Also Mori (199200) maintained that antiviral approaches including chemotherapy and 565 

vaccination are promising for prevention and treatment of AD and remain to be validated. 566 

Furthermore, Carter (118) suggested that vaccination or antiviral agents and immune 567 

suppressants may be considered as therapeutic options before or in during the early stages of 568 

AD. Interestingly, exposure of HSV-1-infected cell cultures to intravenous immunoglobulin 569 

acting via anti-β-amyloid antibodies,antibodies reduced the accumulation of Aβ and 570 

phosphorylated tau (200201).  571 
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Angiotensin-converting enzyme (ACE) from Stigmatella aurantiaca may cleave the Aβ 572 

peptide similar to human ACE and may be used as a novel form of treatment against AD 573 

(201202). Furthermore, Chiarini et al. (202203) maintained that calcilytics could halt AD 574 

progression and preserve the patients' cortical neurons, cognitive abilities, and eventually life 575 

if given at minimal cognitive impairment or at earlier stages. Studies from using mice 576 

suggested the use of tau aggregation inhibitors as potential drugs for the treatment of AD and 577 

other tauopathies (203204).  578 

Resveratrol is a polyphenol present in red wine. Its capability of directly interfering with the 579 

toxic β-amyloid protein aggregation in AD has recently been shown (204205). Resveratrol 580 

was found to reduce Aβ-induced toxicity in a Caenorhabditis elegans model of AD by 581 

targeting specific proteins involved in proteostasis and thereby reducing the amount of 582 

aggregated Aβ (205206). This is in concert with our previous finding that the effect of a 583 

drinking pattern of 2-7 times per week reduced the risk of myocardial infarction among men 584 

who had a history of tooth extractions due to periodontal/dental infection (206207). 585 

Potent inhibitors of Aβ oligomer formation or Aβ-induced cell toxicity have proven to be 586 

attractive means for therapeutic intervention of AD.  Song et al. (207208) found that the anti-587 

Alzheimer effects of centipedegrass, which contains several C-glycosyl flavone constituents, 588 

occurred through inhibition of neuronal cell death by intervening with oligomeric Aβ 589 

formation and reducing beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) 590 

activity. The authors suggested that Maysin, a major flavonoid of corn silk, in centipedegrass 591 

could be an excellent therapeutic candidate for the prevention of AD. 592 

Active immunization against important domains of Alzheimer tau eliminated tau aggregation 593 

and neurofibrillary pathology (208209). The AD type of tau hyperphosphorylation was 594 

abolished in transgenic mice by vaccination across a wide range of AD phospho-epitopes. 595 
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Kontsekova et al. (208209) demonstrated that active immunization of rats with a tau peptide 596 

encompassing the epitope revealed by monoclonal antibody DC8E8 led to elimination of all 597 

major hallmarks of neurofibrillary pathology involving a 95% reduction in the AD-type 598 

hyperphosphorylation of tau. 599 

 600 

CONCLUSIONS 601 

LOAD which is the predominant form of AD, does not seem to have a single cause. On the 602 

contrary, a multitude of factors may be involved and they may act in concert. Of theseAmong 603 

others , both genetic and environmental factors may be involved. Even among 604 

cooperation-action may occur since the brain can hardly differentiate between different 605 

microbial insults which collectively contribute capacity for enhancing all end up in 606 

Irrespective of the cause, systemic inflammation may predict the onset of dementia. 607 

Organisms such as spirochetes, P. gingivalis, C. pneumoniae, H. pylori, Hherpes simplex type 608 

virus and Candida are among the prime candidate pathogens the most suspected pathogens in 609 

events causing AD, oral microorganisms may play a role, particularly anaerobic bacteria such 610 

as treponemes, P. gingivalis, Prevotella spp., Fusobacterium and Actinomyces, but also 611 

facultative anaerobic Candida species. It is important to recognize that infection can occur 612 

decades before the manifestation of dementia. The most convincing evidence for a causal 613 

relationship between oral bacteria and AD is that noted for spirochetes which are both 614 

neurotropic and motile. They also fulfill Koch’s and Hill’s postulates for a causal relationship. 615 

It is likely that oral infection can be a risk factor for Alzheimer’s disease but it is not the only 616 

one. Experiments in humans in vivo may require long exposure times to disclose key events 617 

and mechanisms of AD. There is, as yet, no cure for AD despite concerted efforts and 618 

investment by industry.and this is not without concerted efforts from investment by industry 619 

but because drug discovery in dementia is hugely challenging. Prevention of AD through 620 
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long-term use of antibiotics may be impractical and could select for resistant bacteria. This is 621 

worrisome as the prevalence of AD and the public expenses related to its management are 622 

expected to increase greatly in the next decade.  623 

in AD, then dental hygiene and treatment will provide the AD prophylaxis from an early age 624 

this oral disease periodontitis is modifiable. However, improving oral hygiene and treating 625 

in the AD patient can be challenging since patients are often uncooperative.  There is also 626 

for training care-givers to assist with oral care in such patients.  627 

Vaccination against key organisms and important domains of AD has had some beneficial 628 

effect. Also several agents interfering directly with the pathogenesis of AD have been tested. 629 

In order to find a cure, there is a need for clinical diagnostic information and knowledge of 630 

the causal agents for AD AD causative agents so that specific treatment options targeting 631 

these organisms,  against these organisms, can be developed. As for diagnostic biomarkers, 632 

increased antibody levels to specific oral pathogens in particular to P. gingivalis may be used 633 

as a preventive monitoring tool years before clinical manifestation of AD. This is important 634 

because treatment will probably have to start early.  635 
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 1240 

 1241 

 1242 

 1243 

Fig. 1. The pathological hallmarks of AD, numerous extracellular amyloid-Aβ plaques 1244 

and intra-neuronal neurofibrillary tangles (NFTs). Although there are several NFTs, 1245 

only one is picked out in boxes at x 10 and x 40 objective lens magnification. 1246 

 1247 

Fig. 2. Immunofluorescence labelling (green dots) of hippocampal CA neurons 1248 

opsonised by iC3b following monoinfection with P. gingivalis at 24 weeks of APOɛ 1249 

gene knockout (ApoE−/−) mice. This is indirect evidence of an oral infection having 1250 

affected the host’s brain. 1251 

 1252 

Fig. 3. Photo of a Sabouraud agar model made from the upper denture of an old patient 1253 

with denture stomatitis and heavy accumulations of denture plaque on the fitting 1254 

surface. Candida species are growing profusely. 1255 

Fig. 3 Section of pons area of Alzheimer's disease brain from an 84-year-old female 1256 

subject (from ref. 5 with permission), demonstrates metabolically active Treponema 1257 

pectinovorum oral bacteria (arrows) stained dark blue following immunostaining with 1258 

anti-T. pectinovorum  using the avidin-biotin peroxidase method. 1259  1260 
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