16 research outputs found

    Expression of GJB2 and GJB6 Is Reduced in a Novel DFNB1 Allele

    Get PDF
    In a large kindred of German descent, we found a novel allele that segregates with deafness when present in trans with the 35delG allele of GJB2. Qualitative polymerase chain reaction–based allele-specific expression assays showed that expression of both GJB2 and GJB6 from the novel allele is dramatically reduced. This is the first evidence of a deafness-associated regulatory mutation of GJB2 and of potential coregulation of GJB2 and GJB6

    Dual origin of ferropericlase inclusions within super-deep diamonds

    No full text
    Ferropericlase [(Mg,Fe)O] is one of the major constituents of Earth’s lower mantle and the most abundant mineral inclusion in sub-lithospheric diamonds. Although a lower mantle origin for ferropericlase inclusions has often been suggested, some studies have proposed that many of these inclusions may instead form at much shallower depths, in the deep upper mantle or transition zone. No straightforward method exists to discriminate ferropericlase of lower-mantle origin without characteristic mineral associations, such as co-existing former bridgmanite. To explore ferropericlase-diamond growth relationships, we have investigated the crystallographic orientation relationships (CORs), determined by single-crystal X-ray diffraction, between 57 ferropericlase inclusions and 37 diamonds from Juina (Brazil) and Kankan (Guinea). We show that ferropericlase inclusions can develop specific (16 inclusions in 12 diamonds), rotational statistical (9 inclusions in 7 diamonds) and random (32 inclusions in 25 diamond) CORs with respect to their diamond hosts. All measured inclusions showing a specific COR were found to be Fe-rich (XFeO>0.30). Coexistence of non-randomly and randomly oriented ferropericlase inclusions within the same diamond indicates that their CORs may be variably affected by local growth conditions. However, the occurrence of specific CORs onlyfor Fe-rich inclusions indicates that Fe-rich ferropericlases have a distinct genesis and are syngenetic with their host diamonds. This result provides strong support for a dual origin for ferropericlase in Earth’s mantle, with Fe-rich compositions likely indicating redox growth in the upper mantle, while more Mg-rich compositions with random COR mostly representing ambient lower mantle trapped as protogenetic inclusions
    corecore