438 research outputs found

    On the basis of the Burnside ring of a fusion system

    Get PDF
    We consider the Burnside ring A(F) of F-stable S-sets for a saturated fusion system F defined on a p-group S. It is shown by S.P. Reeh that the monoid of F-stable sets is a free commutative monoid with canonical basis {αP}. We give an explicit formula that describes αP as an S-set. In the formula we use a combinatorial concept called broken chains which we introduce to understand inverses of modified Möbius functions. © 2014 Elsevier Inc

    Climate Noise Influences Ice Sheet Mean State

    Get PDF
    Evidence from proxy records indicates that millennial‐scale abrupt climate shifts, called Dansgaard‐Oeschger events, happened during past glacial cycles. Various studies have been conducted to uncover the physical mechanism behind them, based on the assumption that climate mean state determines the variability. However, our study shows that the Dansgaard‐Oeschger events can regulate the mean state of the Northern Hemisphere ice sheets. Sensitivity experiments show that the simulated mean state is influenced by the amplitude of the climatic noise. The most likely cause of this phenomenon is the nonlinear response of the surface mass balance to temperature. It could also cause the retreat processes to be faster than the buildup processes within a glacial cycle. We propose that the climate variability hindered ice sheet development and prevented the Earth system from entering a full glacial state from Marine Isotope Stage 4 to Marine Isotope Stage 3 about 60,000 years ago

    Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones.

    Get PDF
    Protease-activated receptors (PAR1-4) are activated by proteases released by cell damage or blood clotting, and are known to be involved in promoting pain and hyperalgesia. Previous studies have shown that PAR2 receptors enhance activation of TRPV1 but the role of other PARs is less clear. In this paper we investigate the expression and function of the PAR1, 3 and 4 thrombin-activated receptors in sensory neurones. Immunocytochemistry and in situ hybridization show that PAR1 and PAR4 are expressed in 10 - 15% of neurons, distributed across all size classes. Thrombin or a specific PAR1 or PAR4 activating peptide (PAR1/4-AP) caused functional effects characteristic of activation of the PLCβ/PKC pathway: intracellular calcium release, sensitisation of TRPV1, and translocation of the epsilon isoform of PKC (PKCε) to the neuronal cell membrane. Sensitisation of TRPV1 was significantly reduced by PKC inhibitors. Neurons responding to thrombin or PAR1-AP were either small nociceptive neurones of the peptidergic subclass, or larger neurones which expressed markers for myelinated fibres. Sequential application of PAR1-AP and PAR4-AP showed that PAR4 is expressed in a subset of the PAR1-expressing neurons. Calcium responses to PAR2-AP were by contrast seen in a distinct population of small IB4+ nociceptive neurones. PAR3 appears to be non-functional in sensory neurones. In a skin-nerve preparation the release of the neuropeptide CGRP by heat was potentiated by PAR1-AP. Culture with nerve growth factor (NGF) increased the proportion of thrombin-responsive neurons in the IB4- population, while glial-derived neurotropic factor (GDNF) and neurturin upregulated the proportion of thrombin-responsive neurons in the IB4+ population. We conclude that PAR1 and PAR4 are functionally expressed in large myelinated fibre neurons, and are also expressed in small nociceptors of the peptidergic subclass, where they are able to potentiate TRPV1 activity.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Massive Vector Mesons and Gauge Theory

    Get PDF
    We show that the requirements of renormalizability and physical consistency imposed on perturbative interactions of massive vector mesons fix the theory essentially uniquely. In particular physical consistency demands the presence of at least one additional physical degree of freedom which was not part of the originally required physical particle content. In its simplest realization (probably the only one) these are scalar fields as envisaged by Higgs but in the present formulation without the ``symmetry-breaking Higgs condensate''. The final result agrees precisely with the usual quantization of a classical gauge theory by means of the Higgs mechanism. Our method proves an old conjecture of Cornwall, Levin and Tiktopoulos stating that the renormalization and consistency requirements of spin=1 particles lead to the gauge theory structure (i.e. a kind of inverse of 't Hooft's famous renormalizability proof in quantized gauge theories) which was based on the on-shell unitarity of the SS-matrix. We also speculate on a possible future ghostfree formulation which avoids ''field coordinates'' altogether and is expected to reconcile the on-shell S-matrix point of view with the off-shell field theory structure.Comment: 53 pages, version to appear in J. Phys.

    Thermodynamics of Heat Shock Response

    Get PDF
    Production of heat shock proteins are induced when a living cell is exposed to a rise in temperature. The heat shock response of protein DnaK synthesis in E.coli for temperature shifts from temperature T to T plus 7 degrees, respectively to T minus 7 degrees is measured as function of the initial temperature T. We observe a reversed heat shock at low T. The magnitude of the shock increases when one increase the distance to the temperature T023oT_0 \approx 23^o, thereby mimicking the non monotous stability of proteins at low temperature. Further we found that the variation of the heat shock with T quantitatively follows the thermodynamic stability of proteins with temperature. This suggest that stability related to hot as well as cold unfolding of proteins is directly implemented in the biological control of protein folding. We demonstrate that such an implementation is possible in a minimalistic chemical network.Comment: To be published in Physical Review Letter

    Hyperentangled States

    Get PDF
    We investigate a new class of entangled states, which we call 'hyperentangled',that have EPR correlations identical to those in the vacuum state of a relativistic quantum field. We show that whenever hyperentangled states exist in any quantum theory, they are dense in its state space. We also give prescriptions for constructing hyperentangled states that involve an arbitrarily large collection of systems.Comment: 23 pages, LaTeX, Submitted to Physical Review
    corecore