661 research outputs found

    Endomorphisms and automorphisms of locally covariant quantum field theories

    Full text link
    In the framework of locally covariant quantum field theory, a theory is described as a functor from a category of spacetimes to a category of *-algebras. It is proposed that the global gauge group of such a theory can be identified as the group of automorphisms of the defining functor. Consequently, multiplets of fields may be identified at the functorial level. It is shown that locally covariant theories that obey standard assumptions in Minkowski space, including energy compactness, have no proper endomorphisms (i.e., all endomorphisms are automorphisms) and have a compact automorphism group. Further, it is shown how the endomorphisms and automorphisms of a locally covariant theory may, in principle, be classified in any single spacetime. As an example, the endomorphisms and automorphisms of a system of finitely many free scalar fields are completely classified.Comment: v2 45pp, expanded to include additional results; presentation improved and an error corrected. To appear in Rev Math Phy

    Excellence in Supervision: Practical Wisdom from Supervisors/Mentors

    Get PDF
    This essay summarizes and critiques the types of training and support provided to site supervisors, as summarized by a survey of AFTE members

    Anosov Flows and Dynamical Zeta Functions

    Full text link
    We study the Ruelle and Selberg zeta functions for \Cs^r Anosov flows, r>2r > 2, on a compact smooth manifold. We prove several results, the most remarkable being: (a) for \Cs^\infty flows the zeta function is meromorphic on the entire complex plane; (b) for contact flows satisfying a bunching condition (e.g. geodesic flows on manifolds of negative curvature better than 19\frac 19-pinched) the zeta function has a pole at the topological entropy and is analytic in a strip to its left; (c) under the same hypotheses as in (b) we obtain sharp results on the number of periodic orbits. Our arguments are based on the study of the spectral properties of a transfer operator acting on suitable Banach spaces of anisotropic currents

    Star Formation in Isolated Disk Galaxies. I. Models and Characteristics of Nonlinear Gravitational Collapse

    Full text link
    We model gravitational collapse leading to star formation in a wide range of isolated disk galaxies using a three-dimensional, smoothed particle hydrodynamics code. The model galaxies include a dark matter halo and a disk of stars and isothermal gas. Absorbing sink particles are used to directly measure the mass of gravitationally collapsing gas. They reach masses characteristic of stellar clusters. In this paper, we describe our galaxy models and numerical methods, followed by an investigation of the gravitational instability in these galaxies. Gravitational collapse forms star clusters with correlated positions and ages, as observed, for example, in the Large Magellanic Cloud. Gravitational instability alone acting in unperturbed galaxies appears sufficient to produce flocculent spiral arms, though not more organized patterns. Unstable galaxies show collapse in thin layers in the galactic plane; associated dust will form thin dust lanes in those galaxies, in agreement with observations. (abridged)Comment: 49 pages, 22 figures, to appear in ApJ (July, 2005), version with high quality color images can be fond in http://research.amnh.org/~yuexing/astro-ph/0501022.pd

    The hydrodynamics of the supernova remnant Cas A: The influence of the progenitor evolution on the velocity structure and clumping

    Full text link
    There are large differences in the proposed progenitor models for the Cas A SNR. One of these differences is the presence or absence of a Wolf-Rayet (WR) phase of the progenitor star. The mass loss history of the progenitor star strongly affects the shape of the Supernova remnant (SNR). In this paper we investigate whether the progenitor star of Cas A had a WR phase or not and how long it may have lasted. We performed two-dimensional multi-species hydrodynamical simulations of the CSM around the progenitor star for several WR life times, each followed by the interaction of the supernova ejecta with the CSM. We then looked at the influence of the length of the WR phase and compared the results of the simulations with the observations of Cas A. The difference in the structure of the CSM, for models with different WR life times, has a strong impact on the resulting SNR. With an increasing WR life time the reverse shock velocity of the SNR decreases and the range of observed velocities in the shocked material increases. Furthermore, if a WR phase occurs, the remainders of the WR shell will be visible in the resulting SNR. Comparing our results with the observations suggests that the progenitor star of Cas A did not have a WR phase. We also find that the quasi-stationary flocculi (QSF) in Cas A are not consistent with the clumps from a WR shell that have been shocked and accelerated by the interaction with the SN ejecta. We can also conclude that for a SN explosion taking place in a CSM that is shaped by the wind during a short < 15000 yr WR phase, the clumps from the WR shell will be visible inside the SNR.Comment: 11 figures, 11 pages, accepted for publication in A&

    One-neutron removal reactions on neutron-rich psd-shell nuclei

    Full text link
    A systematic study of high energy, one-neutron removal reactions on 23 neutron-rich, psd--shell nuclei (Z=5-9, A=12-25) has been carried out. The longitudinal momentum distributions of the core fragments and corresponding single-neutron removal cross sections are reported for reactions on a carbon target. Extended Glauber model calculations, weighted by the spectroscopic factors obtained from shell model calculations, are compared to the experimental results. Conclusions are drawn regarding the use of such reactions as a spectroscopic tool and spin-parity assignments are proposed for 15B, 17C, 19-21N, 21,23O, 23-25F. The nature of the weakly bound systems 14B and 15,17C is discussed.Comment: 11 pages + 2 figure

    To see or not to see a Bow Shock: Identifying Bow Shocks with H-Alpha Allsky Surveys

    Get PDF
    OB-stars have the highest luminosities and strongest stellar winds of all stars, which enables them to interact strongly with their surrounding ISM, thus creating bow shocks. These offer us an ideal opportunity to learn more about the ISM. They were first detected and analysed around runaway OB-stars using the IRAS allsky survey by van Buren et al. (1995). Using the geometry of such bow shocks information concerning the ISM density and its fluctuations can be gained from such infrared observations. As to help to improve the bow shock models, additional observations at other wavelengths, e.g. H-Alpha, are most welcome. However due to their low velocity these bow shocks have a size of ~1 degrees, and could only be observed as a whole with great difficulties. In the light of the new H-Alpha allsky surveys (SHASSA/VTSS) this is no problem any more. We developed different methods to detect bow shocks, e.g. the improved determination of their symmetry axis with radial distance profiles. Using two H-Alpha-allsky surveys (SHASSA/VTSS), we searched for bow shocks and compared the different methods. From our sample we conclude, that the correlation between the direction of both proper motion and the symmetry axis determined with radial distance profile is the most promising detection method. We found eight bow shocks around HD 17505, HD 24430, HD 48099, HD 57061, HD 92206, HD 135240, HD 149757, and HD 158186 from 37 candidates taken from van Buren et al. (1995). Additionally to the traditional determination of ISM parameters using the standoff distance of the bow shock, another approach was chosen, using the thickness of the bow-shock layer. Both methods lead to the same results, yielding densities (~1 cm^{-3}) and the maximal temperatures (~10^4 K), that fit well to the up-to-date picture of the Warm Ionised Medium.Comment: 12 pages, 12 figures, Accepted, A&A 04/28/200

    ¹H, ¹⁵N, ¹³C backbone resonance assignments of human phosphoglycerate kinase in a transition state analogue complex with ADP, 3-phosphoglycerate and magnesium trifluoride

    Get PDF
    Human phosphoglycerate kinase (PGK) is an energy generating glycolytic enzyme that catalyses the transfer of a phosphoryl group from 1,3-bisphosphoglycerate (BPG) to ADP producing 3-phosphoglycerate (3PG) and ATP. PGK is composed of two α/β Rossmann-fold domains linked by a central α-helix and the active site is located in the cleft formed between the N-domain which binds BPG or 3PG, and the C-domain which binds the nucleotides ADP or ATP. Domain closure is required to bring the two substrates into close proximity for phosphoryl transfer to occur, however previous structural studies involving a range of native substrates and substrate analogues only yielded open or partly closed PGK complexes. X-ray crystallography using magnesium trifluoride (MgF3(-)) as a isoelectronic and near-isosteric mimic of the transferring phosphoryl group (PO3(-)), together with 3PG and ADP has been successful in trapping human PGK in a fully closed transition state analogue (TSA) complex. In this work we report the (1)H, (15)N and (13)C backbone resonance assignments of human PGK in the solution conformation of the fully closed PGK:3PG:MgF3:ADP TSA complex. Assignments were obtained by heteronuclear multidimensional NMR spectroscopy. In total, 97% of all backbone resonances were assigned in the complex, with 385 out of a possible 399 residues assigned in the (1)H-(15)N TROSY spectrum. Prediction of solution secondary structure from a chemical shift analysis using the TALOS-N webserver is in good agreement with the published X-ray crystal structure of this complex

    Incidence and Distribution of Microfungi in a Treated Municipal Water Supply System in Sub-Tropical Australia

    Get PDF
    Drinking water quality is usually determined by its pathogenic bacterial content. However, the potential of water-borne spores as a source of nosocomial fungal infection is increasingly being recognised. This study into the incidence of microfungal contaminants in a typical Australian municipal water supply was carried out over an 18 month period. Microfungal abundance was estimated by the membrane filtration method with filters incubated on malt extract agar at 25 °C for seven days. Colony forming units were recovered from all parts of the system and these were enumerated and identified to genus level. The most commonly recovered genera were Cladosporium, Penicillium, Aspergillus and Fusarium. Nonparametric multivariate statistical analyses of the data using MDS, PCA, BEST and bubble plots were carried out with PRIMER v6 software. Positive and significant correlations were found between filamentous fungi, yeasts and bacteria. This study has demonstrated that numerous microfungal genera, including those that contain species which are opportunistic human pathogens, populate a typical treated municipal water supply in sub-tropical Australia
    corecore