16 research outputs found

    NAA10 p.(D10G) and NAA10 p.(L11R) variants hamper formation of the NatA N-terminal acetyltransferase complex

    Get PDF
    The majority of the human proteome is subjected to N-terminal (Nt) acetylation catalysed by N-terminal acetyltransferases (NATs). The NatA complex is composed of two core subunits—the catalytic subunit NAA10 and the ribosomal anchor NAA15. Furthermore, NAA10 may also have catalytic and non-catalytic roles independent of NatA. Several inherited and de novo NAA10 variants have been associated with genetic disease in humans. In this study, we present a functional analysis of two de novo NAA10 variants, c.29A>G p.(D10G) and c.32T>G p.(L11R), previously identified in a male and a female, respectively. Both of these neighbouring amino acids are highly conserved in NAA10. Immunoprecipitation experiments revealed that both variants hamper complex formation with NAA15 and are thus likely to impair NatA-mediated Nt-acetylation in vivo. Despite their common impact on NatA formation, in vitro Nt-acetylation assays showed that the variants had opposing impacts on NAA10 catalytic activity. While NAA10 c.29A>G p.(D10G) exhibits normal intrinsic NatA activity and reduced monomeric NAA10 NAT activity, NAA10 c.32T>G p.(L11R) displays reduced NatA activity and normal NAA10 NAT activity. This study expands the scope of research into the functional consequences of NAA10 variants and underlines the importance of understanding the diverse cellular roles of NAA10 in disease mechanisms.publishedVersio

    The N-terminal acetyltransferase Naa10 is essential for zebrafish development

    Get PDF
    N-terminal acetylation, catalysed by N-terminal acetyltransferases (NATs), is among the most common protein modifications in eukaryotes and involves the transfer of an acetyl group from acetyl-CoA to the α-amino group of the first amino acid. Functions of N-terminal acetylation include protein degradation and sub-cellular targeting. Recent findings in humans indicate that a dysfunctional Nα-acetyltransferase (Naa) 10, the catalytic subunit of NatA, the major NAT, is associated with lethality during infancy. In the present study, we identified the Danio rerio orthologue zebrafish Naa 10 (zNaa10). In vitro N-terminal acetylation assays revealed that zNaa10 has NAT activity with substrate specificity highly similar to that of human Naa10. Spatiotemporal expression pattern was determined by in situ hybridization, showing ubiquitous expression with especially strong staining in brain and eye. By morpholino-mediated knockdown, we demonstrated that naa10 morphants displayed increased lethality, growth retardation and developmental abnormalities like bent axis, abnormal eyes and bent tails. In conclusion, we identified the zebrafish Naa10 orthologue and revealed that it is essential for normal development and viability of zebrafish.publishedVersio

    Can group-based reassuring information alter low back pain behavior? A cluster-randomized controlled trial?

    Get PDF
    Background Low back pain (LBP) is common in the population and multifactorial in nature, often involving negative consequences. Reassuring information to improve coping is recommended for reducing the negative consequences of LBP. Adding a simple non-threatening explanation for the pain (temporary muscular dysfunction) has been successful at altering beliefs and behavior when delivered with other intervention elements. This study investigates the isolated effect of this specific information on future occupational behavior outcomes when delivered to the workforce. Design A cluster-randomized controlled trial. Methods Publically employed workers (n=505) from 11 Danish municipality centers were randomized at center-level (cluster) to either intervention (two 1-hour group-based talks at the workplace) or control. The talks provided reassuring information together with a simple non-threatening explanation for LBP - the ‘functional-disturbance’-model. Data collections took place monthly over a 1-year period using text message tracking (SMS). Primary outcomes were self-reported days of cutting down usual activities and work participation. Secondary outcomes were self-reported back beliefs, work ability, number of healthcare visits, bothersomeness, restricted activity, use of pain medication, and sadness/depression. Results There was no between-group difference in the development of LBP during follow-up. Cumulative logistic regression analyses showed no between-group difference on days of cutting down activities, but increased odds for more days of work participation in the intervention group (OR=1.83 95% CI: 1.08-3.12). Furthermore, the intervention group was more likely to report: higher work ability, reduced visits to healthcare professionals, lower bothersomeness, lower levels of sadness/depression, and positive back beliefs. Conclusion Reassuring information involving a simple non-threatening explanation for LBP significantly increased the odds for days of work participation and higher work ability among workers who went on to experience LBP during the 12-month follow-up. Our results confirm the potential for public-health education for LBP, and add to the discussion of simple versus multidisciplinary interventions

    Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes

    Get PDF
    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained

    Naa12 compensates for Naa10 in mice in the amino-terminal acetylation pathway

    Get PDF
    Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism, and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralog with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice

    Naa12 compensates for Naa10 in mice in the amino-terminal acetylation pathway.

    Get PDF
    Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralogue with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice

    Co-translational, post-translational, and non-catalytic roles of N-terminal acetyltransferases

    Get PDF
    Recent studies of N-terminal acetylation have identified new N-terminal acetyltransferases (NATs) and expanded the known functions of these enzymes beyond their roles as ribosome-associated co-translational modifiers. For instance, the identification of Golgi- and chloroplast-associated NATs shows that acetylation of N termini also happens post-translationally. In addition, we now appreciate that some NATs are highly specific; for example, a dedicated NAT responsible for post-translational N-terminal acetylation of actin was recently revealed. Other studies have extended NAT function beyond Nt acetylation, including functions as lysine acetyltransferases (KATs) and non-catalytic roles. Finally, emerging studies emphasize the physiological relevance of N-terminal acetylation, including roles in calorie-restriction-induced longevity and pathological α-synuclein aggregation in Parkinson’s disease. Combined, the NATs rise as multifunctional proteins, and N-terminal acetylation is gaining recognition as a major cellular regulator

    NAA10 p.(D10G) and NAA10 p.(L11R) variants hamper formation of the NatA N-terminal acetyltransferase complex

    No full text
    The majority of the human proteome is subjected to N-terminal (Nt) acetylation catalysed by N-terminal acetyltransferases (NATs). The NatA complex is composed of two core subunits—the catalytic subunit NAA10 and the ribosomal anchor NAA15. Furthermore, NAA10 may also have catalytic and non-catalytic roles independent of NatA. Several inherited and de novo NAA10 variants have been associated with genetic disease in humans. In this study, we present a functional analysis of two de novo NAA10 variants, c.29A>G p.(D10G) and c.32T>G p.(L11R), previously identified in a male and a female, respectively. Both of these neighbouring amino acids are highly conserved in NAA10. Immunoprecipitation experiments revealed that both variants hamper complex formation with NAA15 and are thus likely to impair NatA-mediated Nt-acetylation in vivo. Despite their common impact on NatA formation, in vitro Nt-acetylation assays showed that the variants had opposing impacts on NAA10 catalytic activity. While NAA10 c.29A>G p.(D10G) exhibits normal intrinsic NatA activity and reduced monomeric NAA10 NAT activity, NAA10 c.32T>G p.(L11R) displays reduced NatA activity and normal NAA10 NAT activity. This study expands the scope of research into the functional consequences of NAA10 variants and underlines the importance of understanding the diverse cellular roles of NAA10 in disease mechanisms

    Hydroxylation of the Acetyltransferase NAA10 Trp38 Is Not an Enzyme-Switch in Human Cells

    Get PDF
    NAA10 is a major N-terminal acetyltransferase (NAT) that catalyzes the cotranslational N-terminal (Nt-) acetylation of 40% of the human proteome. Several reports of lysine acetyltransferase (KAT) activity by NAA10 exist, but others have not been able to find any NAA10-derived KAT activity, the latter of which is supported by structural studies. The KAT activity of NAA10 towards hypoxia-inducible factor 1α (HIF-1α) was recently found to depend on the hydroxylation at Trp38 of NAA10 by factor inhibiting HIF-1α (FIH). In contrast, we could not detect hydroxylation of Trp38 of NAA10 in several human cell lines and found no evidence that NAA10 interacts with or is regulated by FIH. Our data suggest that NAA10 Trp38 hydroxylation is not a switch in human cells and that it alters its catalytic activity from a NAT to a KAT
    corecore