379 research outputs found

    Angiogenic gene expression and vascular density are reflected in ultrasonographic features of synovitis in early Rheumatoid Arthritis: an observational study.

    Get PDF
    INTRODUCTION: Neovascularization contributes to the development of sustained synovial inflammation in the early stages of Rheumatoid Arthritis. Ultrasound (US) provides an indirect method of assessing synovial blood flow and has been shown to correlate with clinical disease activity in patients with Rheumatoid Arthritis. This study examines the relationship of US determined synovitis with synovial vascularity, angiogenic/lymphangiogenic factors and cellular mediators of inflammation in a cohort of patients with early Rheumatoid Arthritis (RA) patients prior to therapeutic intervention with disease modifying therapy or corticosteroids. METHODS: An ultrasound guided synovial biopsy of the supra-patella pouch was performed in 12 patients with early RA prior to treatment. Clinical, US and biochemical assessments were undertaken prior to the procedure. Ultrasound images and histological samples were obtained from the supra-patella pouch. Histological samples were stained for Factor VIII and a-SMA (a-smooth muscle actin). Using digital imaging analysis a vascular area score was recorded. QT-PCR (quantitative-PCR) of samples provided quantification of angiogenic and lymphangiogenic gene expression and immunohistochemistry stained tissue was scored for macrophage, T cell and B cell infiltration using an existing semi-quantitative score. RESULTS: Power Doppler showed a good correlation with histological vascular area (Spearman r--0.73) and angiogenic factors such as vascular endothelial growth factor-A (VEGF-A), Angiopoietin 2 and Tie-2. In addition, lymphangiogenic factors such as VEGF-C and VEGF-R3 correlated well with US assessment of synovitis. A significant correlation was also found between power Doppler and synovial thickness, pro-inflammatory cytokines and sub-lining macrophage infiltrate. Within the supra-patella pouch there was no significant difference in US findings, gene expression or inflammatory cell infiltrate between any regions of synovium biopsied. CONCLUSION: Ultrasound assessment of synovial tissue faithfully reflects synovial vascularity. Both grey scale and power Doppler synovitis in early RA patients correlate with a pro-angiogenic and lymphangiogenic gene expression profile. In early RA both grey scale and power Doppler synovitis are associated with a pro-inflammatory cellular and cytokine profile providing considerable validity in its use as an objective assessment of synovial inflammation in clinical practice

    Clinical pharmacokinetics of antipsychotics in pediatric populations:a scoping review focusing on dosing regimen

    Get PDF
    Introduction:Achieving optimal clinical responses and minimizing side effects through precision dosing of antipsychotics in children and adolescents with psychiatric disorders remains a challenge. Identifying patient characteristics (covariates) that affect pharmacokinetics can inform more effective dosing strategies and ultimately improve patient outcomes. This review aims to provide greater insight into the impact of covariates on the clinical pharmacokinetics of antipsychotics in pediatric populations. Areas covered: A comprehensive literature search was conducted, and the main findings regarding the effects of the covariates on the pharmacokinetics of antipsychotics in children and adolescents are presented. Expert opinion: Our study highlights significant covariates, including age, sex, weight, CYP2D6 phenotype, co-medication, and smoking habits, which affect the pharmacokinetics of antipsychotics. However, the findings were generally limited by the small sample sizes of naturalistic, open-label, observational studies, and the homogeneous subgroups. Dosing based on weight and preemptive genotyping could prove beneficial for optimizing the dosing regimen in pediatric populations. Future research is needed to refine dosing recommendations and establish therapeutic reference ranges critical for precision dosing and Therapeutic Drug Monitoring (TDM). The integration of individual patient characteristics with TDM can further optimize the efficacy and safety of antipsychotics for each patient.</p

    Case report: Expanding the understanding of the adult polyglucosan body disease continuum: novel presentations, diagnostic pitfalls, and clinical pearls

    Get PDF
    Introduction: Adult polyglucosan body disease (APBD) has long been regarded as the adult-onset form of glycogen storage disease type IV (GSD IV) and is caused by biallelic pathogenic variants in GBE1. Advances in the understanding of the natural history of APBD published in recent years have led to the use of discrete descriptors (“typical” versus “atypical”) based on adherence to traditional symptomatology and homozygosity for the p.Y329S variant. Although these general descriptors are helpful in summarizing common findings and symptoms in APBD, they are inherently limited and may affect disease recognition in diverse populations.Methods: This case series includes three American patients (cases 1–3) and four Brazilian patients (cases 4–7) diagnosed with APBD. Patient-reported outcome (PRO) measures were employed to evaluate pain, fatigue, and quality of life in cases 1–3.Results: We describe the clinical course and diagnostic odyssey of seven cases of APBD that challenge the utility and efficacy of discrete descriptors. Cases 1–3 are compound heterozygotes that harbor the previously identified deep intronic variant in GBE1 and presented with “typical” APBD phenotypically, despite lacking two copies of the pathogenic p.Y329S variant. Patient-reported outcome measures in these three cases revealed the moderate levels of pain and fatigue as well as an impacted quality of life. Cases 4–7 have unique genotypic profiles and emphasize the growing recognition of presentations of APBD in diverse populations with broad neurological manifestations.Conclusion: Collectively, these cases underscore the understanding of APBD as a spectrum disorder existing on the GSD IV phenotypic continuum. We draw attention to the pitfalls of commonly used genetic testing methods when diagnosing APBD and highlight the utility of patient-reported outcome questionnaires in managing this disease

    Estimating taxon-specific population dynamics in diverse microbial communities

    Get PDF
    Understanding how population-level dynamics contribute to ecosystem-level processes is a primary focus of ecological research and has led to important breakthroughs in the ecology of macroscopic organisms. However, the inability to measure population-specific rates, such as growth, for microbial taxa within natural assemblages has limited ecologists’ understanding of how microbial populations interact to regulate ecosystem processes. Here, we use isotope incorporation within DNA molecules to model taxon- specific population growth in the presence of 18O-labeled water. By applying this model to phylogenetic marker sequencing data collected from stable-isotope probing studies, we estimate rates of growth, mortal- ity, and turnover for individual microbial populations within soil assemblages. When summed across the entire bacterial community, our taxon-specific estimates are within the range of other whole-assemblage measurements of bacterial turnover. Because it can be applied to environmental samples, the approach we present is broadly applicable to measuring population growth, mortality, and associated biogeochemical process rates of microbial taxa for a wide range of ecosystems and can help reveal how individual microbial populations drive biogeochemical fluxes

    Fire and grazing in a mesic tallgrass prairie: impacts on plant species and functional traits

    Get PDF
    Fire is a globally distributed disturbance that impacts terrestrial ecosystems and has been proposed to be a global “herbivore.” Fire, like herbivory, is a top-down driver that converts organic materials into inorganic products, alters community structure, and acts as an evolutionary agent. Though grazing and fire may have some comparable effects in grasslands, they do not have similar impacts on species composition and community structure. However, the concept of fire as a global herbivore implies that fire and herbivory may have similar effects on plant functional traits. Using 22 years of data from a mesic, native tallgrass prairie with a long evolutionary history of fire and grazing, we tested if trait composition between grazed and burned grassland communities would converge, and if the degree of convergence depended on fire frequency. Additionally, we tested if eliminating fire from frequently burned grasslands would result in a state similar to unburned grasslands, and if adding fire into a previously unburned grassland would cause composition to become more similar to that of frequently burned grasslands. We found that grazing and burning once every four years showed the most convergence in traits, suggesting that these communities operate under similar deterministic assembly rules and that fire and herbivory are similar disturbances to grasslands at the trait-group level of organization. Three years after reversal of the fire treatment we found that fire reversal had different effects depending on treatment. The formerly unburned community that was then burned annually became more similar to the annually burned community in trait composition suggesting that function may be rapidly restored if fire is reintroduced. Conversely, after fire was removed from the annually burned community trait composition developed along a unique trajectory indicating hysteresis, or a time lag for structure and function to return following a change in this disturbance regime. We conclude that functional traits and species-based metrics should be considered when determining and evaluating goals for fire management in mesic grassland ecosystems

    Development of endotoxin tolerance does not influence the response to a challenge with the mucosal live-attenuated influenza vaccine in humans in vivo

    Get PDF
    Introduction: The effects of bacterial infections on the response to subsequent viral infections are largely unknown. This is important to elucidate to increase insight into the pathophysiology of bacterial and viral co-infections, and to assess whether bacterial infections may influence the course of viral infections. Methods: Healthy male subjects received either bacterial endotoxin [Escherichia coli-derived lipopolysaccharide (LPS), 2 ng/kg, n = 15] or placebo (n = 15) intravenously, followed by intranasal Fluenz (live-attenuated influenza vaccine) 1 week later. Results: LPS administration resulted in increased plasma cytokine levels and development of endotoxin tolerance in vivo and ex vivo, illustrated by attenuated cytokine production upon rechallenge with LPS. Following Fluenz administration, infectivity for the Fluenz A/B strains was similar between the LPS-Fluenz and placebo-Fluenz groups (13/15 subjects in both groups). Also, the Fluenz-induced increase in temperature and IL-6, G-CSF and IP-10 concentrations in nasal wash were similar between both groups. Conclusion: While endotoxemia profoundly attenuates the immune response upon a second LPS challenge, it does not influence the Fluenz-induced immune response. These results suggest immune suppression after bacterial infection does not alter the response to a subsequent viral infection

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Accelerated SARS-CoV-2 Intrahost Evolution Leading to Distinct Genotypes During Chronic Infection

    Get PDF
    The chronic infection hypothesis for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant emergence is increasingly gaining credence following the appearance of Omicron. Here, we investigate intrahost evolution and genetic diversity of lineage B.1.517 during a SARS-CoV-2 chronic infection lasting for 471 days (and still ongoing) with consistently recovered infectious virus and high viral genome copies. During the infection, we find an accelerated virus evolutionary rate translating to 35 nucleotide substitutions per year, approximately 2-fold higher than the global SARS-CoV-2 evolutionary rate. This intrahost evolution results in the emergence and persistence of at least three genetically distinct genotypes, suggesting the establishment of spatially structured viral populations continually reseeding different genotypes into the nasopharynx. Finally, we track the temporal dynamics of genetic diversity to identify advantageous mutations and highlight hallmark changes for chronic infection. Our findings demonstrate that untreated chronic infections accelerate SARS-CoV-2 evolution, providing an opportunity for the emergence of genetically divergent variants

    Phylogenetic organization of bacterial activity.

    Get PDF
    Phylogeny is an ecologically meaningful way to classify plants and animals, as closely related taxa frequently have similar ecological characteristics, functional traits and effects on ecosystem processes. For bacteria, however, phylogeny has been argued to be an unreliable indicator of an organism\u27s ecology owing to evolutionary processes more common to microbes such as gene loss and lateral gene transfer, as well as convergent evolution. Here we use advanced stable isotope probing with (13)C and (18)O to show that evolutionary history has ecological significance for in situ bacterial activity. Phylogenetic organization in the activity of bacteria sets the stage for characterizing the functional attributes of bacterial taxonomic groups. Connecting identity with function in this way will allow scientists to begin building a mechanistic understanding of how bacterial community composition regulates critical ecosystem functions.The ISME Journal advance online publication, 4 March 2016; doi:10.1038/ismej.2016.28
    corecore