3,051 research outputs found

    An XMM-Newton view of M101 - III. Diffuse X-ray emission

    Get PDF
    We present a study of the X-ray properties of the nearby face-on Scd spiral galaxy M101 based on recent XMM–Newton observations. In this third and final paper in the present series, we focus on the spatial and spectral properties of the residual emission, after excluding bright X-ray sources with LX > 1037 erg s−1. Within a central region of radius 10 arcmin (21 kpc), the X-ray emission broadly traces the pattern of the spiral arms, establishing a strong link with recent star formation, but it also exhibits a radial scalelength of ≈2.6 arcmin (5.4 kpc) consistent with optical data. We estimate the soft X-ray luminosity within the central 5 arcmin (10.5 kpc) region to be LX ≈ 2.1 × 1039 erg s−1 (0.5–2 keV), the bulk of which appears to originate as diffuse emission. We find a two-temperature thermal model best fits the spectral data with derived temperatures of keV which are very typical of the diffuse components seen in other normal and starburst galaxies. More detailed investigation of the X-ray morphology reveals a strong correlation with images recorded in the far-ultraviolet through to V band, with the best match being with the U band. We interpret these results in terms of a clumpy thin-disc component which traces the spiral arms of M101 plus an extended lower halo component with large filling factor

    Exploring the dynamics of flagellar dynein within the axoneme with Fluctuating Finite Element Analysis

    Get PDF
    Flagellar dyneins are the molecular motors responsible for producing the propagating bending motions of cilia and flagella. They are located within a densely packed and highly organised super-macromolecular cytoskeletal structure known as the axoneme. Using the mesoscale simulation technique Fluctuating Finite Element Analysis (FFEA), which represents proteins as viscoelastic continuum objects subject to explicit thermal noise, we have quantified the constraints on the range of molecular conformations that can be explored by dynein-c within the crowded architecture of the axoneme. We subsequently assess the influence of crowding on the 3D exploration of microtubule-binding sites, and specifically on the axial step length. Our calculations combine experimental information on the shape, flexibility and environment of dynein-c from three distinct sources; negative stain electron microscopy, cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET). Our FFEA simulations show that the super-macromolecular organisation of multiple protein complexes into higher-order structures can have a significant influence on the effective flexibility of the individual molecular components, and may, therefore, play an important role in the physical mechanisms underlying their biological function

    Automated multi-objective calibration of biological agent-based simulations

    Get PDF
    Computational agent-based simulation (ABS) is increasingly used to complement laboratory techniques in advancing our understanding of biological systems. Calibration, the identification of parameter values that align simulation with biological behaviours, becomes challenging as increasingly complex biological domains are simulated. Complex domains cannot be characterized by single metrics alone, rendering simulation calibration a fundamentally multi-metric optimization problem that typical calibration techniques cannot handle. Yet calibration is an essential activity in simulation-based science; the baseline calibration forms a control for subsequent experimentation and hence is fundamental in the interpretation of results. Here, we develop and showcase a method, built around multi-objective optimization, for calibrating ABSs against complex target behaviours requiring several metrics (termed objectives) to characterize. Multi-objective calibration (MOC) delivers those sets of parameter values representing optimal trade-offs in simulation performance against each metric, in the form of a Pareto front. We use MOC to calibrate a well-understood immunological simulation against both established a priori and previously unestablished target behaviours. Furthermore, we show that simulation-borne conclusions are broadly, but not entirely, robust to adopting baseline parameter values from different extremes of the Pareto front, highlighting the importance of MOC's identification of numerous calibration solutions. We devise a method for detecting overfitting in a multi-objective context, not previously possible, used to save computational effort by terminating MOC when no improved solutions will be found. MOC can significantly impact biological simulation, adding rigour to and speeding up an otherwise time-consuming calibration process and highlighting inappropriate biological capture by simulations that cannot be well calibrated. As such, it produces more accurate simulations that generate more informative biological predictions

    Fluctuating Finite Element Analysis (FFEA): A continuum mechanics software tool for mesoscale simulation of biomolecules

    Get PDF
    Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 ÎŒm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB) or Protein Data Bank (PDB) data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package

    The Conserved Tarp Actin Binding Domain Is Important for Chlamydial Invasion

    Get PDF
    The translocated actin recruiting phosphoprotein (Tarp) is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells

    Mutuality as a method: advancing a social paradigm for global mental health through mutual learning.

    Get PDF
    PURPOSE: Calls for "mutuality" in global mental health (GMH) aim to produce knowledge more equitably across epistemic and power differences. With funding, convening, and publishing power still concentrated in institutions in the global North, efforts to decolonize GMH emphasize the need for mutual learning instead of unidirectional knowledge transfers. This article reflects on mutuality as a concept and practice that engenders sustainable relations, conceptual innovation, and queries how epistemic power can be shared. METHODS: We draw on insights from an online mutual learning process over 8 months between 39 community-based and academic collaborators working in 24 countries. They came together to advance the shift towards a social paradigm in GMH. RESULTS: Our theorization of mutuality emphasizes that the processes and outcomes of knowledge production are inextricable. Mutual learning required an open-ended, iterative, and slower paced process that prioritized trust and remained responsive to all collaborators' needs and critiques. This resulted in a social paradigm that calls for GMH to (1) move from a deficit to a strength-based view of community mental health, (2) include local and experiential knowledge in scaling processes, (3) direct funding to community organizations, and (4) challenge concepts, such as trauma and resilience, through the lens of lived experience of communities in the global South. CONCLUSION: Under the current institutional arrangements in GMH, mutuality can only be imperfectly achieved. We present key ingredients of our partial success at mutual learning and conclude that challenging existing structural constraints is crucial to prevent a tokenistic use of the concept

    Brucella abortus–infected platelets modulate the activation of neutrophils

    Get PDF
    Brucellosis is a contagious disease caused by bacteria of the genus Brucella. Platelets (PLTs) have been widely involved in the modulation of the immune response. We have previously reported the modulation of Brucella abortus–mediated infection of monocytes. As a result, PLTs cooperate with monocytes and increase their inflammatory capacity, promoting the resolution of the infection. Extending these results, in this study we demonstrate that patients with brucellosis present slightly elevated levels of complexes between PLTs and both monocytes and neutrophils. We then assessed whether PLTs were capable of modulating functional aspects of neutrophils. The presence of PLTs throughout neutrophil infection increased the production of interleukin‐8, CD11b surface expression and reactive oxygen species formation, whereas it decreased the expression of CD62L, indicating an activated status of these cells. We next analyzed whether this modulation was mediated by released factors. To discriminate between these options, neutrophils were treated with supernatants collected from B. abortus–infected PLTs. Our results show that CD11b expression was induced by soluble factors of PLTs but direct contact between cell populations was needed to enhance the respiratory burst. Additionally, B. abortus–infected PLTs recruit polymorphonuclear (PMN) cells to the site of infection. Finally, the presence of PLTs did not modify the initial invasion of PMN cells by B. abortus but improved the control of the infection at extended times. Altogether, our results demonstrate that PLTs interact with neutrophils and promote a proinflammatory phenotype which could also contribute to the resolution of the infection.Fil: Trotta, Aldana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Milillo, MarĂ­a AyelĂ©n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Serafino, Agustina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Castillo Montañez, Luis Alejandro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Birnberg Weiss, Federico. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Delpino, MarĂ­a Victoria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo; ArgentinaFil: Giambartolomei, Guillermo Hernan. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de InmunologĂ­a, GenĂ©tica y Metabolismo; ArgentinaFil: FernĂĄndez, Cecilia Gabriela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Barrionuevo, Paula. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentin

    Protecting eyewitness evidence: Examining the efficacy of a self-administered interview tool

    Get PDF
    Given the crucial role of eyewitness evidence, statements should be obtained as soon as possible after an incident. This is not always achieved due to demands on police resources. Two studies trace the development of a new tool, the Self-Administered Interview (SAI), designed to elicit a comprehensive initial statement. In Study 1, SAI participants reported more correct details than participants who provided a free recall account, and performed at the same level as participants given a Cognitive Interview. In Study 2, participants viewed a simulated crime and half recorded their statement using the SAI. After a delay of 1 week, all participants completed a free recall test. SAI participants recalled more correct details in the delayed recall task than control participants

    Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds

    Get PDF
    Environmental DNA (eDNA) analysis is a rapid, non-invasive, cost-efficient biodiversity monitoring tool with enormous potential to inform aquatic conservation and management. Development is ongoing, with strong commercial interest, and new uses are continually being discovered. General applications of eDNA and guidelines for best practice in freshwater systems have been established, but habitat-specific assessments are lacking. Ponds are highly diverse, yet understudied systems that could benefit from eDNA monitoring. However, eDNA applications in ponds and methodological constraints specific to these environments remain unaddressed. Following a stakeholder workshop in 2017, researchers combined knowledge and expertise to review these applications and challenges that must be addressed for the future and consistency of eDNA monitoring in ponds. The greatest challenges for pond eDNA surveys are representative sampling, eDNA capture, and potential PCR inhibition. We provide recommendations for sampling, eDNA capture, inhibition testing, and laboratory practice, which should aid new and ongoing eDNA projects in ponds. If implemented, these recommendations will contribute towards an eventual broad standardisation of eDNA research and practice, with room to tailor workflows for optimal analysis and different applications. Such standardisation will provide more robust, comparable, and ecologically meaningful data to enable effective conservation and management of pond biodiversity
    • 

    corecore