1,091 research outputs found
Sub-Second Dopamine Detection in Human Striatum
Fast-scan cyclic voltammetry at carbon fiber microelectrodes allows rapid (sub-second) measurements of dopamine release in behaving animals. Herein, we report the modification of existing technology and demonstrate the feasibility of making sub-second measurements of dopamine release in the caudate nucleus of a human subject during brain surgery. First, we describe the modification of our electrodes that allow for measurements to be made in a human brain. Next, we demonstrate in vitro and in vivo, that our modified electrodes can measure stimulated dopamine release in a rat brain equivalently to previously determined rodent electrodes. Finally, we demonstrate acute measurements of dopamine release in the caudate of a human patient during DBS electrode implantation surgery. The data generated are highly amenable for future work investigating the relationship between dopamine levels and important decision variables in human decision-making tasks
Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms
Fermionic alkaline-earth atoms have unique properties that make them
attractive candidates for the realization of novel atomic clocks and degenerate
quantum gases. At the same time, they are attracting considerable theoretical
attention in the context of quantum information processing. Here we demonstrate
that when such atoms are loaded in optical lattices, they can be used as
quantum simulators of unique many-body phenomena. In particular, we show that
the decoupling of the nuclear spin from the electronic angular momentum can be
used to implement many-body systems with an unprecedented degree of symmetry,
characterized by the SU(N) group with N as large as 10. Moreover, the interplay
of the nuclear spin with the electronic degree of freedom provided by a stable
optically excited state allows for the study of spin-orbital physics. Such
systems may provide valuable insights into strongly correlated physics of
transition metal oxides, heavy fermion materials, and spin liquid phases.Comment: 15 pages, 10 figures. V2: extended experimental accessibility and
Kondo sections in the main text (including new Fig. 5b) and in the Methods;
reorganized other parts; added reference
The potential for land sparing to offset greenhouse gas emissions from agriculture
Greenhouse gas emissions from global agriculture are increasing at around 1% per annum, yet substantial cuts in emissions are needed across all sectors. The challenge of reducing agricultural emissions is particularly acute, because the reductions achievable by changing farming practices are limited and are hampered by rapidly rising food demand. Here we assess the technical mitigation potential offered by land sparing-increasing agricultural yields, reducing farm land area and actively restoring natural habitats on the land spared. Restored habitats can sequester carbon and can offset emissions from agriculture. Using the United Kingdom as an example, we estimate net emissions in 2050 under a range of future agricultural scenarios. We find that a land-sparing strategy has the technical potential to achieve significant reductions in net emissions from agriculture and land-use change. Coupling land sparing with demand-side strategies to reduce meat consumption and food waste can further increase the technical mitigation potential, however economic and implementation considerations might limit the degree to which this technical potential could be realised in practice.This research was funded by the Cambridge Conservation Initiative Collaborative Fund for Conservation and we thank its major sponsor Arcadia. We thank J. Bruinsma for the provision of demand data, the CEH for the provision of soil data and J. Spencer for invaluable discussions. A.L. was supported by a Gates Cambridge Scholarship.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nclimate291
Heterokaryon Incompatibility Is Suppressed Following Conidial Anastomosis Tube Fusion in a Fungal Plant Pathogen
It has been hypothesized that horizontal gene/chromosome transfer and parasexual recombination following hyphal fusion between different strains may contribute to the emergence of wide genetic variability in plant pathogenic and other fungi. However, the significance of vegetative (heterokaryon) incompatibility responses, which commonly result in cell death, in preventing these processes is not known. In this study, we have assessed this issue following different types of hyphal fusion during colony initiation and in the mature colony. We used vegetatively compatible and incompatible strains of the common bean pathogen Colletotrichum lindemuthianum in which nuclei were labelled with either a green or red fluorescent protein in order to microscopically monitor the fates of nuclei and heterokaryotic cells following hyphal fusion. As opposed to fusion of hyphae in mature colonies that resulted in cell death within 3 h, fusions by conidial anastomosis tubes (CAT) between two incompatible strains during colony initiation did not induce the vegetative incompatibility response. Instead, fused conidia and germlings survived and formed heterokaryotic colonies that in turn produced uninucleate conidia that germinated to form colonies with phenotypic features different to those of either parental strain. Our results demonstrate that the vegetative incompatibility response is suppressed during colony initiation in C. lindemuthianum. Thus, CAT fusion may allow asexual fungi to increase their genetic diversity, and to acquire new pathogenic traits
Policy Adjustment in a Dynamic Economic Game
Making sequential decisions to harvest rewards is a notoriously difficult problem. One difficulty is that the real world is not stationary and the reward expected from a contemplated action may depend in complex ways on the history of an animal's choices. Previous functional neuroimaging work combined with principled models has detected brain responses that correlate with computations thought to guide simple learning and action choice. Those works generally employed instrumental conditioning tasks with fixed action-reward contingencies. For real-world learning problems, the history of reward-harvesting choices can change the likelihood of rewards collected by the same choices in the near-term future. We used functional MRI to probe brain and behavioral responses in a continuous decision-making task where reward contingency is a function of both a subject's immediate choice and his choice history. In these more complex tasks, we demonstrated that a simple actor-critic model can account for both the subjects' behavioral and brain responses, and identified a reward prediction error signal in ventral striatal structures active during these non-stationary decision tasks. However, a sudden introduction of new reward structures engages more complex control circuitry in the prefrontal cortex (inferior frontal gyrus and anterior insula) and is not captured by a simple actor-critic model. Taken together, these results extend our knowledge of reward-learning signals into more complex, history-dependent choice tasks. They also highlight the important interplay between striatum and prefrontal cortex as decision-makers respond to the strategic demands imposed by non-stationary reward environments more reminiscent of real-world tasks
Comparative Live-Cell Imaging Analyses of SPA-2, BUD-6 and BNI-1 in Neurospora crassa Reveal Novel Features of the Filamentous Fungal Polarisome
A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture
Temporal-Difference Reinforcement Learning with Distributed Representations
Temporal-difference (TD) algorithms have been proposed as models of reinforcement learning (RL). We examine two issues of distributed representation in these TD algorithms: distributed representations of belief and distributed discounting factors. Distributed representation of belief allows the believed state of the world to distribute across sets of equivalent states. Distributed exponential discounting factors produce hyperbolic discounting in the behavior of the agent itself. We examine these issues in the context of a TD RL model in which state-belief is distributed over a set of exponentially-discounting âmicro-Agentsâ, each of which has a separate discounting factor (Îł). Each ”Agent maintains an independent hypothesis about the state of the world, and a separate value-estimate of taking actions within that hypothesized state. The overall agent thus instantiates a flexible representation of an evolving world-state. As with other TD models, the value-error (ÎŽ) signal within the model matches dopamine signals recorded from animals in standard conditioning reward-paradigms. The distributed representation of belief provides an explanation for the decrease in dopamine at the conditioned stimulus seen in overtrained animals, for the differences between trace and delay conditioning, and for transient bursts of dopamine seen at movement initiation. Because each ”Agent also includes its own exponential discounting factor, the overall agent shows hyperbolic discounting, consistent with behavioral experiments
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- âŠ