174 research outputs found

    Refinement of mouse protocols for the study of platelet thromboembolic responses in vivo

    Get PDF
    Mouse models of thromboembolism are frequently used to investigate platelet function in vivo and, according to European Union (EU) legislation, must be conducted in the context of replacement, refinement and reduction. We have previously developed a refined real-time mouse model of thromboembolism as an alternative to models of thromboembolic mortality which inflict considerable pain and suffering. Real-time monitoring involves infusion of radiolabelled platelets into the circulation of anaesthetized mice, and platelet aggregation is measured as increases in platelet-associated counts in the pulmonary vasculature following injection of platelet agonists. This gives a definitive data set on the tissue localization and extent of platelet activation. We developed an additional, more simplistic alternative to mortality models based on blood microsampling which entails the measurement of circulating platelet counts following agonist stimulation. Blood microsamples were collected from the tail vein of anaesthetized mice at three different time points leading to a reduction in animal numbers. Platelet counts significantly dropped 1 minute after stimulation with collagen or thrombin and were restored over 10 minutes. These results correlate with those obtained via real-time monitoring and were confirmed by immunohistochemistry. Pre-treatment of mice with aspirin significantly inhibited the decrease in platelet counts following collagen. These data suggest that blood microsampling may be implemented as a simplistic refined alternative to mortality models of thromboembolism when specialized monitoring equipment, or use of radioactive isotopes for real-time monitoring, which remains the ‘gold standard’, is not feasible. Microsampling refines and reduces animal procedures in compliance with current EU legislatio

    Incorporating chemical signalling factors into cell-based models of growing epithelial tissues

    Get PDF
    In this paper we present a comprehensive computational framework within which the effects of chemical signalling factors on growing epithelial tissues can be studied. The method incorporates a vertex-based cell model, in conjunction with a solver for the governing chemical equations. The vertex model provides a natural mesh for the finite element method (FEM), with node movements determined by force laws. The arbitrary Lagrangian–Eulerian formulation is adopted to account for domain movement between iterations. The effects of cell proliferation and junctional rearrangements on the mesh are also examined. By implementing refinements of the mesh we show that the finite element (FE) approximation converges towards an accurate numerical solution. The potential utility of the system is demonstrated in the context of Decapentaplegic (Dpp), a morphogen which plays a crucial role in development of the Drosophila imaginal wing disc. Despite the presence of a Dpp gradient, growth is uniform across the wing disc. We make the growth rate of cells dependent on Dpp concentration and show that the number of proliferation events increases in regions of high concentration. This allows hypotheses regarding mechanisms of growth control to be rigorously tested. The method we describe may be adapted to a range of potential application areas, and to other cell-based models with designated node movements, to accurately probe the role of morphogens in epithelial tissues

    Active Tension Network model suggests an exotic mechanical state realized in epithelial tissues.

    Get PDF
    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal - "isogonal" - deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit y embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena

    Practice Considerations for Adapting In-Person Groups to Telerehabilitation

    Get PDF
    The Coronavirus-2019 (COVID-19) pandemic has shifted research and healthcare system priorities, stimulating literature on implementation and evaluation of telerehabilitation for a variety of patient populations. While there is substantial literature on individual telerehabilitation, evidence about group telerehabilitation remains limited despite its increasing use by rehabilitation providers. Therefore, the purpose of this manuscript is to describe our expert team’s consensus on practice considerations for adapting in-person group rehabilitation to group telerehabilitation to provide rapid guidance during a pandemic and create a foundation for sustainability of group telerehabilitation beyond the pandemic’s end. &nbsp

    Inherited human group IVA cytosolic phospholipase A(2) deficiency abolishes platelet, endothelial, and leucocyte eicosanoid generation

    Get PDF
    This research was supported by an Imperial College Junior Research Fellowship (to N.S.K.), Wellcome Trust program grant (0852551Z108/Z to J.A.M. and T.D.W.), British Heart Foundation Ph.D. studentship (FS/10/033/28271 to F.R.), British Heart Foundation project grant (PG/11/39/28890 to D.B.-B.), and by the Intramural Research Program of the U.S. National Institutes of Health, National Institute of Environmental Health Sciences (Z01 ES025034 to D.C.Z.)

    RhoA GTPase inhibition organizes contraction during epithelial morphogenesis

    Get PDF
    During morphogenesis, contraction of the actomyosin cytoskeleton within individual cells drives cell shape changes that fold tissues. Coordination of cytoskeletal contractility is mediated by regulating RhoA GTPase activity. Guanine nucleotide exchange factors (GEFs) activate and GTPase-activating proteins (GAPs) inhibit RhoA activity. Most studies of tissue folding, including apical constriction, have focused on how RhoA is activated by GEFs to promote cell contractility, with little investigation as to how GAPs may be important. Here, we identify a critical role for a RhoA GAP, Cumberland GAP (C-GAP), which coordinates with a RhoA GEF, RhoGEF2, to organize spatiotemporal contractility during Drosophila melanogaster apical constriction. C-GAP spatially restricts RhoA pathway activity to a central position in the apical cortex. RhoGEF2 pulses precede myosin, and C-GAP is required for pulsation, suggesting that contractile pulses result from RhoA activity cycling. Finally, C-GAP expression level influences the transition from reversible to irreversible cell shape change, which defines the onset of tissue shape change. Our data demonstrate that RhoA activity cycling and modulating the ratio of RhoGEF2 to C-GAP are required for tissue folding.American Cancer Society (125792-RSG-14-039-01-CSM

    Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells

    Get PDF
    Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin–Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization

    Cell-Sorting at the A/P Boundary in the Drosophila Wing Primordium: A Computational Model to Consolidate Observed Non-Local Effects of Hh Signaling

    Get PDF
    Non-intermingling, adjacent populations of cells define compartment boundaries; such boundaries are often essential for the positioning and the maintenance of tissue-organizers during growth. In the developing wing primordium of Drosophila melanogaster, signaling by the secreted protein Hedgehog (Hh) is required for compartment boundary maintenance. However, the precise mechanism of Hh input remains poorly understood. Here, we combine experimental observations of perturbed Hh signaling with computer simulations of cellular behavior, and connect physical properties of cells to their Hh signaling status. We find that experimental disruption of Hh signaling has observable effects on cell sorting surprisingly far from the compartment boundary, which is in contrast to a previous model that confines Hh influence to the compartment boundary itself. We have recapitulated our experimental observations by simulations of Hh diffusion and transduction coupled to mechanical tension along cell-to-cell contact surfaces. Intriguingly, the best results were obtained under the assumption that Hh signaling cannot alter the overall tension force of the cell, but will merely re-distribute it locally inside the cell, relative to the signaling status of neighboring cells. Our results suggest a scenario in which homotypic interactions of a putative Hh target molecule at the cell surface are converted into a mechanical force. Such a scenario could explain why the mechanical output of Hh signaling appears to be confined to the compartment boundary, despite the longer range of the Hh molecule itself. Our study is the first to couple a cellular vertex model describing mechanical properties of cells in a growing tissue, to an explicit model of an entire signaling pathway, including a freely diffusible component. We discuss potential applications and challenges of such an approach

    Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.

    Get PDF
    Collective cell migration is essential for morphogenesis, tissue remodelling and cancer invasion. In vivo, groups of cells move in an orchestrated way through tissues. This movement involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in collective cell migration is comparatively well understood, how tissue mechanics influence collective cell migration in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiates an epithelial-to-mesenchymal transition in neural crest cells and triggers their collective migration. To detect changes in their mechanical environment, neural crest cells use mechanosensation mediated by the integrin-vinculin-talin complex. By performing mechanical and molecular manipulations, we show that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrate that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results show that convergent extension of the mesoderm has a role as a mechanical coordinator of morphogenesis, and reveal a link between two apparently unconnected processes-gastrulation and neural crest migration-via changes in tissue mechanics. Overall, we demonstrate that changes in substrate stiffness can trigger collective cell migration by promoting epithelial-to-mesenchymal transition in vivo. More broadly, our results raise the idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis
    corecore