62 research outputs found

    Genetic basis and outcome in a nationwide study of Finnish patients with hypertrophic cardiomyopathy

    Get PDF
    Aims Nationwide large-scale genetic and outcome studies in cohorts with hypertrophic cardiomyopathy (HCM) have not been previously published.Methods and results We sequenced 59 cardiomyopathy-associated genes in 382 unrelated Finnish patients with HCM and found 24 pathogenic or likely pathogenic mutations in six genes in 38.2% of patients. Most mutations were located in sarcomere genes (MYBPC3, MYH7, TPM1, and MYL2). Previously reported mutations by our study group (MYBPC3-Gln1061Ter, MYH7-Arg1053Gln, and TPM1-Asp175Asn) and a fourth major mutation MYH7-Val606Met accounted for 28.0% of cases. Mutations in GLA and PRKAG2 were found in three patients. Furthermore, we found 49 variants of unknown significance in 31 genes in 20.4% of cases. During a 6.7 +/- 4.2 year follow-up, annual all-cause mortality in 482 index patients and their relatives with HCM was higher than that in the matched Finnish population (1.70 vs. 0.87%; P < 0.001). Sudden cardiac deaths were rare (n = 8). Systolic heart failure (hazard ratio 17.256, 95% confidence interval 3.266-91.170, P = 0.001) and maximal left ventricular wall thickness (hazard ratio 1.223, 95% confidence interval 1.098-1.363, P < 0.001) were independent predictors of HCM-related mortality and life-threatening cardiac events. The patients with a pathogenic or likely pathogenic mutation underwent an implantable cardioverter defibrillator implantation more often than patients without a pathogenic or likely pathogenic mutation (12.9 vs. 3.5%, P < 0.001), but there was no difference in all-cause or HCM-related mortality between the two groups. Mortality due to HCM during 10 year follow-up among the 5.2 million population of Finland was studied from death certificates of the National Registry, showing 269 HCM-related deaths, of which 32% were sudden.Conclusions We identified pathogenic and likely pathogenic mutations in 38% of Finnish patients with HCM. Four major sarcomere mutations accounted for 28% of HCM cases, whereas HCM-related mutations in non-sarcomeric genes were rare. Mortality in patients with HCM exceeded that of the general population. Finally, among 5.2 million Finns, there were at least 27 HCM-related deaths annually

    Exercise training with dietary counselling increases mitochondrial chaperone expression in middle-aged subjects with impaired glucose tolerance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin resistance and diabetes are associated with increased oxidative stress and impairment of cellular defence systems. Our purpose was to investigate the interaction between glucose metabolism, antioxidative capacity and heat shock protein (HSP) defence in different skeletal muscle phenotypes among middle-aged obese subjects during a long-term exercise and dietary intervention. As a sub-study of the Finnish Diabetes Prevention Study (DPS), 22 persons with impaired glucose tolerance (IGT) taking part in the intervention volunteered to give samples from the <it>vastus lateralis </it>muscle. Subjects were divided into two sub-groups (IGTslow and IGTfast) on the basis of their baseline myosin heavy chain profile. Glucose metabolism, oxidative stress and HSP expressions were measured before and after the 2-year intervention.</p> <p>Results</p> <p>Exercise training, combined with dietary counselling, increased the expression of mitochondrial chaperones HSP60 and glucose-regulated protein 75 (GRP75) in the <it>vastus lateralis </it>muscle in the IGTslow group and that of HSP60 in the IGTfast group. In cytoplasmic chaperones HSP72 or HSP90 no changes took place. In the IGTslow group, a significant positive correlation between the increased muscle content of HSP60 and the oxygen radical absorbing capacity values and, in the IGTfast group, between the improved VO<sub>2max </sub>value and the increased protein expression of GRP75 were found. Serum uric acid concentrations decreased in both sub-groups and serum protein carbonyl concentrations decreased in the IGTfast group.</p> <p>Conclusion</p> <p>The 2-year intervention up-regulated mitochondrial HSP expressions in middle-aged subjects with impaired glucose tolerance. These improvements, however, were not correlated directly with enhanced glucose tolerance.</p

    Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Initiation and elongation of RNA polymerase II (RNAPII) transcription is regulated by both DNA sequence and chromatin signals. Recent breakthroughs make it possible to measure the chromatin state and activity of core promoters genome-wide, but dedicated computational strategies are needed to progress from descriptive annotation of data to quantitative, predictive models.</p> <p>Results</p> <p>Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII in the gene body, the mRNA production originating from the promoter and finally also the stalling characteristics of RNAPII by considering both quantitative and spatial features of histone modifications around the transcription start site (TSS).</p> <p>As the model framework can also pinpoint the signals that are the most influential for prediction, it can be used to infer underlying regulatory biology. For example, we show that the H3K4 di- and tri- methylation signals are strongly predictive for promoter location while the acetylation marks H3K9 and H3K27 are highly important in estimating the promoter usage. All of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive of RNAPII stalling.</p> <p>Conclusions</p> <p>In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data.</p

    Interaction of climate change with effects of conspecific and heterospecific density on reproduction

    Get PDF
    We studied the relationship between temperature and the coexistence of great titParus majorand blue titCyanistes caeruleus, breeding in 75 study plots across Europe and North Africa. We expected an advance in laying date and a reduction in clutch size during warmer springs as a general response to climate warming and a delay in laying date and a reduction in clutch size during warmer winters due to density-dependent effects. As expected, as spring temperature increases laying date advances and as winter temperature increases clutch size is reduced in both species. Density of great tit affected the relationship between winter temperature and laying date in great and blue tit. Specifically, as density of great tit increased and temperature in winter increased both species started to reproduce later. Density of blue tit affected the relationship between spring temperature and blue and great tit laying date. Thus, both species start to reproduce earlier with increasing spring temperature as density of blue tit increases, which was not an expected outcome, since we expected that increasing spring temperature should advance laying date, while increasing density should delay it cancelling each other out. Climate warming and its interaction with density affects clutch size of great tits but not of blue tits. As predicted, great tit clutch size is reduced more with density of blue tits as temperature in winter increases. The relationship between spring temperature and density on clutch size of great tits depends on whether the increase is in density of great tit or blue tit. Therefore, an increase in temperature negatively affected the coexistence of blue and great tits differently in both species. Thus, blue tit clutch size was unaffected by the interaction effect of density with temperature, while great tit clutch size was affected in multiple ways by these interactions terms.Peer reviewe

    Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca)

    Get PDF
    Carotenoids in the egg yolks of birds are considered to be important antioxidants and immune stimulants during the rapid growth of embryos. Yolk carotenoid composition is strongly affected by the carotenoid composition of the female’s diet at the time of egg formation. Spatial and temporal differences in carotenoid availability may thus be reflected in yolk concentrations. To assess whether yolk carotenoid concentrations or carotenoid profiles show any large-scale geographical trends or differences among habitats, we collected yolk samples from 16 European populations of the pied flycatcher, Ficedula hypoleuca. We found that the concentrations and proportions of lutein and some other xanthophylls in the egg yolks decreased from Central Europe northwards. The most southern population (which is also the one found at the highest altitude) also showed relatively low carotenoid levels. Concentrations of β-carotene and zeaxanthin did not show any obvious geographical gradients. Egg yolks also contained proportionally more lutein and other xanthophylls in deciduous than in mixed or coniferous habitats. We suggest that latitudinal gradients in lutein and xanthophylls reflect the lower availability of lutein-rich food items in the northern F. hypoleuca populations and in montane southern populations, which start egg-laying earlier relative to tree phenology than the Central European populations. Similarly, among-habitat variation is likely to reflect the better availability of lutein-rich food in deciduous forests. Our study is the first to indicate that the concentration and profile of yolk carotenoids may show large-scale spatial variation among populations in different parts of the species’ geographical range. Further studies are needed to test the fitness effects of this geographical variation

    The FunGenES Database: A Genomics Resource for Mouse Embryonic Stem Cell Differentiation

    Get PDF
    Embryonic stem (ES) cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types. To investigate gene networks operating in pluripotent ES cells and their derivatives, the “Functional Genomics in Embryonic Stem Cells” consortium (FunGenES) has analyzed the transcriptome of mouse ES cells in eleven diverse settings representing sixty-seven experimental conditions. To better illustrate gene expression profiles in mouse ES cells, we have organized the results in an interactive database with a number of features and tools. Specifically, we have generated clusters of transcripts that behave the same way under the entire spectrum of the sixty-seven experimental conditions; we have assembled genes in groups according to their time of expression during successive days of ES cell differentiation; we have included expression profiles of specific gene classes such as transcription regulatory factors and Expressed Sequence Tags; transcripts have been arranged in “Expression Waves” and juxtaposed to genes with opposite or complementary expression patterns; we have designed search engines to display the expression profile of any transcript during ES cell differentiation; gene expression data have been organized in animated graphs of KEGG signaling and metabolic pathways; and finally, we have incorporated advanced functional annotations for individual genes or gene clusters of interest and links to microarray and genomic resources. The FunGenES database provides a comprehensive resource for studies into the biology of ES cells

    Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes

    Get PDF
    Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy Consortium assembled genome-wide association studies of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (P < 5 x 10(-8)) with GDM, mapping to/near MTNR1B (P = 4.3 x 10(-54)), TCF7L2 (P = 4.0 x 10(-16)), CDKAL1 (P = 1.6 x 10(-4)), CDKN2A-CDKN2B (P = 4.1 x 10(-9)) and HKDC1 (P = 2.9 x 10(-8)). Multiple lines of evidence pointed to the shared pathophysiology of GDM and T2D: (i) four of the five GDM loci (not HKDC1) have been previously reported at genome-wide significance for T2D; (ii) significant enrichment for associations with GDM at previously reported T2D loci; (iii) strong genetic correlation between GDM and T2D and (iv) enrichment of GDM associations mapping to genomic annotations in diabetes-relevant tissues and transcription factor binding sites. Mendelian randomization analyses demonstrated significant causal association (5% false discovery rate) of higher body mass index on increased GDM risk. Our results provide support for the hypothesis that GDM and T2D are part of the same underlying pathology but that, as exemplified by the HKDC1 locus, there are genetic determinants of GDM that are specific to glucose regulation in pregnancy.Peer reviewe

    The great tit HapMap project: a continental‐scale analysis of genomic variation in a songbird

    Get PDF
    A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude – almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear ‘islands of differentiation’, even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics
    • …
    corecore