7 research outputs found

    Assessment of recent global potential models with terrestrial data

    Get PDF
    Bu çalışmada gravite alanı belirleme amaçlı GRACE ve CHAMP uydularının verileri ile hesaplanan güncel global potansiyel modellerin (GGM02S, EIGEN-CHAMP03S, EIGEN-CG03C ve EIGEN-GL04C) Türkiye’deki performansları test edilmekte ve Türkiye bölgesel geoidi TG03’ün hesaplanmasında referans olarak kullanılmış EGM96 global potansiyel modeli ile karşılaştırılmaktadır. TG03 geoit modeli gravimetrik yöntemle belirlenmiştir ve Türkiye’deki jeodezik çalışmalarda kullanılmaktadır. Modelin mutlak doğruluğu desimetre mertebesindedir. Bu çalışmada amaç, farklı global potansiyel modeller ile Türkiye’de gravite alanının uzun dalga boylu bileşenindeki iyileşmenin araştırılmasıdır. Bu amaçla, farklı maksimum derecelerden küresel harmonik eşitlikler ile ifade edilen potansiyel modeller kullanılarak hesaplanan gravite anomalileri ve geoit yükseklikleri sırasıyla yersel gravite verileri ile ve GPS/nivelmandan elde edilen geoit yükseklikleri ile karşılaştırılarak test edilmiştir. Bunun yanı sıra yersel gravite anomalileri ve global potansiyel modeller kullanılarak bölgesel geoit modelleri hesaplanmış, global potansiyel modellerin gravimetrik bölgesel geoit modellerinin doğruluğuna katkısı böylelikle de test edilmiştir. Bunun için hesaplanan bölgesel gravimetrik geoit modellerinden türetilen geoit yükseklikleri bağımsız GPS/nivelman verileri ile karşılaştırılarak Türkiye geoidi için en uygun global potansiyel model belirlenmeye çalışılmıştır. Çalışmanın sonuçlarının presizyonlu Türkiye bölgesel geoidinin gelecek versiyonunun hesaplanmasında referans model olarak kullanılmak üzere en uygun global potansiyel modelin seçilmesinde faydalı olması beklenmektedir. Anahtar Kelimeler: Global potansiyel model, CHAMP, GRACE, bölgesel gravimetrik geoit modeli, yersel gravite anomalileri, GPS/nivelman.CHAMP and GRACE satellites are low Earth orbiters which are used for the determination of the Earth’s gravity field. The mission of the satellites is to provide the knowledge for the gravity field that leads to observe the Earth system for geodetic and geodynamic purposes with a sufficient accuracy. The characteristics specific to the satellites such as design, orbit, measurement and processing techniques have provided new approaches for the global gravity field determination. Earth potential models are representation of the global gravity field and they are divided into three classes, namely satellite-only Global Potential Models (GPMs) (derived from the tracking of artificial satellites), combined GPMs (derived from a combination of a satellite-only model, terrestrial gravimetry, satellite altimetry and/or airborne gravimetry) and tailored GPMs (derived by refining existing satellite-only or combined GPMs using regional gravity data). Satellite-only GPMs are known to be weak at the coefficients of degrees higher than 60 or 70 due to several factors such as the power-decay of the gravitational field with altitude, modeling of atmospheric drag, non-gravitational and third-body perturbations and incomplete tracking of satellite orbits from ground stations. Although the effects of some of these limitations on the GPMs decreased after the dedicated satellite gravity missions CHAMP and GRACE, the new satellite-only GPMs still have not got full power until a certain degree, and rapidly increasing errors make their coefficients unreliable at high-degrees. In this study, the most recent satellite-only and combined global potential models from the CHAMP and GRACE satellite missions released by GFZ (GeoForschungsZentrum) and the Center for Space Research of Texas University were tested. The older combined-GPM EGM96 was also included in the tests. Although EGM96 model was not calculated using data from CHAMP and GRACE, the study includes this model since it serves as the reference model for the official regional geoid model of Turkey. The Earth potential models from CHAMP, GRACE, and other data, assessed in the tests here, are GGM02S, EIGEN-CHAMP03S, EIGEN-CG03C and EIGEN-GL04C and they were compared with the older EGM96. The aim of this study is to investigate the improvements in the modelling of the long wavelength gravity field components for the area of Turkey. With this aim gravity anomaly and geoid height grids were generated for varying maximum degrees of the spherical harmonic expansions and the global potential models were compared with terrestrial gravity data as well as GPS/levelling data in Turkey. Furthermore, regional geoid models were computed by Fast Fourier Transform techniques using terrestrial gravity data and various geopotential models, and the results were again evaluated against GPS/levelling data. The intention of the study is to provide a valuable input for the selection of “the best reference geopotential model” for a high resolution hybrid geoid model for Turkey. In the investigation steps, firstly, the GPMs derived gravity anomalies were compared with the free-air gravity anomalies from the terrestrial data over Turkey. Than the GPMs derived geoid heights were interpolated and compared with the low-pass filtered GPS/levelling derived geoid heights at the co-located benchmarks in two test areas (İzmir and İstanbul) in the West part of Turkey. The statistics from these comparisons provided preliminary results in the assessment of the GPMs. According to this, EGM96, EIGEN-CG03C and EIGEN-GL04C combined geopotential models with the maximum degree and order of 360 fit slightly better in Turkey. In the second evaluation stage, the regional geoid models were computed in Turkey using Remove-Restore technique. The computed regional models refer to each of the GPMs (with their maximum expansion) as reference models. The differences between the geoid heights derived from the gravimetric geoid models and from the GPS/levelling data were investigated in Istanbul and Izmir test networks. According to statistical results, the EIGEN-CG03C is optimal GPM for pure gravimetric geoid model in West of Turkey. Finally, the regional geoid models were fitted to the GPS/levelling with a 2nd order polynomial using the residual geoid heights at the benchmarks. The tests of the regional gravimetric geoid models after corrector surface fitting against the GPS/levelling control data shown that the fitted geoid models has the similar performance in a test area. Keywords: Global potential model, CHAMP, GRACE, regional gravimetric geoid model, terrestrial gravity anomalies, GPS/levelling

    Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer

    Get PDF
    To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L-1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4 degrees C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature.Peer reviewe

    Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer

    No full text
    To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L−1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4°C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature
    corecore