8 research outputs found

    Glycogen storage disease type III: A novel Agl knockout mouse model

    Get PDF
    AbstractGlycogen storage disease type III is an autosomal recessive disease characterized by a deficiency in the glycogen debranching enzyme, encoded by AGL. Essential features of this disease are hepatomegaly, hypoglycemia, hyperlipidemia, and growth retardation. Progressive skeletal myopathy, neuropathy, and/or cardiomyopathy become prominent in adults. Currently, there is no available cure. We generated an Agl knockout mouse model by deletion of the carboxy terminus of the protein, including the carboxy end of the glucosidase domain and the glycogen-binding domain. Agl knockout mice presented serious hepatomegaly, but we did not observe signs of cirrhosis or adenomas. In affected tissues, glycogen storage was higher than in wild-type mice, even in the central nervous system which has never been tested in GSDIII patients. The biochemical findings were in accordance with histological data, which clearly documented tissue impairment due to glycogen accumulation. Indeed, electron microscopy revealed the disruption of contractile units due to glycogen infiltrations. Furthermore, adult Agl knockout animals appeared less prompt to move, and they exhibited kyphosis. Three-mo-old Agl knockout mice could not run, and adult mice showed exercise intolerance. In addition, older affected animals exhibited an accelerated respiratory rate even at basal conditions. This observation was correlated with severe glycogen accumulation in the diaphragm. Diffuse glycogen deposition was observed in the tongues of affected mice. Our results demonstrate that this Agl knockout mouse is a reliable model for human glycogenosis type III, as it recapitulates the essential phenotypic features of the disease

    Reversal of Defective Mitochondrial Biogenesis in Limb-Girdle Muscular Dystrophy 2D by Independent Modulation of Histone and PGC-1α Acetylation

    Get PDF
    Mitochondrial dysfunction occurs in many muscle degenerative disorders. Here, we demonstrate that mitochondrial biogenesis was impaired in limb-girdle muscular dystrophy (LGMD) 2D patients and mice and was associated with impaired OxPhos capacity. Two distinct approaches that modulated histones or peroxisome proliferator-activated receptor-gamma coactivator 1 \u3b1 (PGC-1\u3b1) acetylation exerted equivalent functional effects by targeting different mitochondrial pathways (mitochondrial biogenesis or fatty acid oxidation[FAO]). The histone deacetylase inhibitor Trichostatin A (TSA) changed chromatin assembly at the PGC-1\u3b1 promoter, restored mitochondrial biogenesis, and enhanced muscle oxidative capacity. Conversely, nitric oxide (NO) triggered post translation modifications of PGC-1\u3b1 and induced FAO, recovering the bioenergetics impairment of muscles but shunting the defective mitochondrial biogenesis. In conclusion, a transcriptional blockade of mitochondrial biogenesis occurred in LGMD-2D and could be recovered by TSA changing chromatin conformation, or it could be overcome by NO activating a mitochondrial salvage pathway

    The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis

    Get PDF
    Keywords: Sporadic inclusion body myositis sIBM APOE TOMM40 Age of onset a b s t r a c t A previous study showed that, in carriers of the apolipoprotein E (APOE) genotype ε3/ε3 or ε3/ε4, the presence of a very long (VL) polyT repeat allele in "translocase of outer mitochondrial membrane 40" (TOMM40) was less frequent in patients with sporadic inclusion body myositis (sIBM) compared with controls and associated with a later age of sIBM symptom onset, suggesting a protective effect of this haplotype. To further investigate the influence of these genetic factors in sIBM, we analyzed a large sIBM cohort of 158 cases as part of an International sIBM Genetics Study. No significant association was found between APOE or TOMM40 genotypes and the risk of developing sIBM. We found that the presence of at least 1 VL polyT repeat allele in TOMM40 was significantly associated with about 4 years later onset of sIBM symptoms. The age of onset was delayed by 5 years when the patients were also carriers of the APOE genotype ε3/ε3. In addition, males were likely to have a later age of onset than females. Therefore, the TOMM40 VL polyT repeat, although not influencing disease susceptibility, has a disease-modifying effect on sIBM, which can be enhanced by the APOE genotype ε3/ε3

    ORAI1 Mutations with Distinct Channel Gating Defects in Tubular Aggregate Myopathy

    Get PDF
    Calcium (Ca(2+) ) is a physiological key factor, and the precise modulation of free cytosolic Ca(2+) levels regulates multiple cellular functions. Store-operated Ca(2+) entry (SOCE) is a major mechanism controlling Ca(2+) homeostasis, and is mediated by the concerted activity of the Ca(2+) sensor STIM1 and the Ca(2+) channel ORAI1. Dominant gain-of-function mutations in STIM1 or ORAI1 cause tubular aggregate myopathy (TAM) or Stormorken syndrome, while recessive loss-of-function mutations are associated with immunodeficiency. Here we report the identification and functional characterization of novel ORAI1 mutations in TAM patients. We assess basal activity and SOCE of the mutant ORAI1 channels, and we demonstrate that the G98S and V107M mutations generate constitutively permeable ORAI channels, while T184M alters the channel permeability only in the presence of STIM1. These data indicate a mutation-dependent pathomechanism and a genotype/phenotype correlation, as the ORAI1 mutations associated with the most severe symptoms induce the strongest functional cellular effect. Examination of the non-muscle features of our patients strongly suggest that TAM and Stormorken syndrome are spectra of the same disease. Overall, our results emphasize the importance of SOCE in skeletal muscle physiology, and provide new insights in the pathomechanisms involving aberrant Ca(2+) homeostasis and leading to muscle dysfunction. This article is protected by copyright. All rights reserved

    The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis

    Get PDF
    A previous study showed that, in carriers of the apolipoprotein E (APOE) genotype epsilon 3/epsilon 3 or epsilon 3/epsilon 4, the presence of a very long (VL) polyT repeat allele in "translocase of outer mitochondrial membrane 40" (TOMM40) was less frequent in patients with sporadic inclusion body myositis (sIBM) compared with controls and associated with a later age of sIBM symptom onset, suggesting a protective effect of this haplotype. To further investigate the influence of these genetic factors in sIBM, we analyzed a large sIBM cohort of 158 cases as part of an International sIBM Genetics Study. No significant association was found between APOE or TOMM40 genotypes and the risk of developing sIBM. We found that the presence of at least 1 VL polyT repeat allele in TOMM40 was significantly associated with about 4 years later onset of sIBM symptoms. The age of onset was delayed by 5 years when the patients were also carriers of the APOE genotype epsilon 3/epsilon 3. In addition, males were likely to have a later age of onset than females. Therefore, the TOMM40 VL polyT repeat, although not influencing disease susceptibility, has a disease-modifying effect on sIBM, which can be enhanced by the APOE genotype epsilon 3/epsilon 3

    Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis

    Get PDF
    Genetic factors have been suggested to be involved in the pathogenesis of sporadic inclusion body myositis (sIBM). Sequestosome 1 (SQSTM1) and valosin-containing protein (VCP) are 2 key genes associated with several neurodegenerative disorders but have yet to be thoroughly investigated in sIBM. A candidate gene analysis was conducted using whole-exome sequencing data from 181 sIBM patients, and whole-transcriptome expression analysis was performed in patients with genetic variants of interest. We identified 6 rare missense variants in the SQSTM1 and VCP in 7 sIBM patients (4.0%). Two variants, the SQSTM1 p.G194R and the VCP p.R159C, were significantly overrepresented in this sIBM cohort compared with controls. Five of these variants had been previously reported in patients with degenerative diseases. The messenger RNA levels of major histocompatibility complex genes were upregulated, this elevation being more pronounced in SQSTM1 patient group. We report for the first time potentially pathogenic SQSTM1 variants and expand the spectrum of VCP variants in sIBM. These data suggest that defects in neurodegenerative pathways may confer genetic susceptibility to sIBM and reinforce the mechanistic overlap in these neurodegenerative disorders

    Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis

    No full text
    corecore