111 research outputs found

    Illinois occultation summary, 1. 1977 - 1978

    Get PDF
    Instrumentation and data acquisition techniques used to record lunar occultations at the University of Illinois Prairie Observatory are described. Tables and graphs summarize data from 64 events which include 30 observations of stars brighter than 7th magnitude, 40 reappearances, 4 angular diameter measurements, 8 observations of binary stars, and 6 observations which may indicate multiplicity

    The 10 February 1977 lunar occultation of Uranus. Radius, limb darkening, and polar brightening at 6900 A

    Get PDF
    Contact timings, corrected for lunar limb effects, indicate an equatorial radius of 25700 + or - 500 km for the visible disk for Uranus. A modified Minnaert function is used to model limb darkening and polar brightening. Least squares fits to the observed light curve indicate that Uranus is slightly limb darkened in the passband of the observations (450 A FWHM centered near 6900 A) and that polar brightening is present

    Observation and Interpretation of Lunar Occultations

    Get PDF
    The importance of timings and high resolution astrometry in occultation observations is discussed as well as the occultation process itself. The design and operation of the telescope, photodetector, and data acquisition systems are described. Methods are presented for data analysis and model fitting. Observations of beta Capricorni and Uranus occultations are examined. General conclusions concerning occultation observations are explored and future activities at Prairie Observatory are discussed

    Astrometric jitter of the sun as a star

    Get PDF
    The daily variation of the solar photocenter over some 11 years is derived from the Mount Wilson data reprocessed by Ulrich et al. 2010 to closely match the surface distribution of solar irradiance. The standard deviations of astrometric jitter are 0.52 μ\muAU and 0.39 μ\muAU in the equatorial and the axial dimensions, respectively. The overall dispersion is strongly correlated with the solar cycle, reaching 0.91μ0.91 \muAU at the maximum activity in 2000. The largest short-term deviations from the running average (up to 2.6 μ\muAU) occur when a group of large spots happen to lie on one side with respect to the center of the disk. The amplitude spectrum of the photocenter variations never exceeds 0.033 μ\muAU for the range of periods 0.6--1.4 yr, corresponding to the orbital periods of planets in the habitable zone. Astrometric detection of Earth-like planets around stars as quiet as the Sun is not affected by star spot noise, but the prospects for more active stars may be limited to giant planets.Comment: Accepted in Ap

    A Survey of Chromospheric Activity in the Solar-Type Stars in the Open Cluster M67

    Get PDF
    We present the results of a spectroscopic survey of the Ca II H & K core strengths in a sample of 60 solar-type stars that are members of the solar-age and solar-metallicity open cluster M67. We adopt the HK index, defined as the summed H+K core strengths in 0.1 nm bandpasses centered on the H and K lines, respectively, as a measure of the chromospheric activity that is present. We compare the distribution of mean HK index values for the M67 solar-type stars with the variation of this index as measured for the Sun during the contemporary solar cycle. We find that the stellar distribution in our HK index is broader than that for the solar cycle. Approximately 17% of the M67 sun-like stars exhibit average HK indices that are less than solar minimum. About 7%-12% are characterized by relatively high activity in excess of solar maximum values while 72%-80% of the solar analogs exhibit Ca II H+K strengths within the range of the modern solar cycle. The ranges given reflect uncertainties in the most representative value of the maximum in the HK index to adopt for the solar cycle variations observed during the period A.D. 1976--2004. Thus, ~ 20% - 30% of our homogeneous sample of sun-like stars have mean chromospheric H+K strengths that are outside the range of the contemporary solar cycle. Any cycle-like variability that is present in the M67 solar-type stars appears to be characterized by periods greater than ~ 6 years. Finally, we estimate a mean chromospheric age for M67 in the range of 3.8--4.3 Gyr.Comment: Accepted in The Astrophysical Journa

    Confronting a solar irradiance reconstruction with solar and stellar data

    Get PDF
    Context. A recent paper by Shapiro and colleagues (2011, A&A, 529, A67) reconstructs spectral and total irradiance variations of the Sun during the holocene. Aims. In this note, we comment on why their methodology leads to large (0.5%) variations in the solar TSI on century-long time scales, in stark contrast to other reconstructions which have ≲ 0.1% variations. Methods. We examine the amplitude of the irradiance variations from the point of view of both solar and stellar data. Results. Shapiro et al.’s large amplitudes arise from differences between the irradiances computed from models A and C of Fontenla and colleagues, and from their explicit assumption that the radiances of the quiet Sun vary with the cosmic ray modulation potential. We suggest that the upper photosphere, as given by model A, is too cool, and discuss relative contributions of local vs. global dynamos to the magnetism and irradiance of the quiet Sun. We compare the slow (\u3e22 yr) components of the irradiance reconstructions with secular changes in stellar photometric data that span 20 years or less, and find that the Sun, if varying with such large amplitudes, would still lie within the distribution of stellar photometric variations measured over a 10−20 year period. However, the stellar time series are individually too short to see if the reconstructed variations will remain consistent with stellar variations when observed for several decades more. Conclusions. By adopting model A, Shapiro et al. have over-estimated quiet-Sun irradiance variations by about a factor of two, based upon a re-analysis of sub-mm data from the James Clerk Maxwell telescope. But both estimates are within bounds set by current stellar data. It is therefore vital to continue accurate photometry of solar-like stars for at least another decade, to reveal secular and cyclic variations on multi-decadal time scales of direct interest to the Sun

    Patterns of photometric and chromospheric variation among Sun-like stars: A 20-year perspective

    Full text link
    We examine patterns of variation of 32 primarily main sequence stars, extending our previous 7-12 year time series to 13-20 years by combining b, y data from Lowell Observatory with similar data from Fairborn Observatory. Parallel chromospheric Ca II H and K emission data from the Mount Wilson Observatory span the entire interval. The extended data strengthen the relationship between chromospheric and photometric variation derived previously. Twenty-seven stars are deemed variable. On a year-to-year timescale young active stars become fainter when their Ca II emission increases while older less active stars such as the Sun become brighter when their Ca II emission increases. The Sun's total irradiance variation, scaled to the b and y filter photometry, still appears to be somewhat smaller than stars in our limited sample with similar mean chromospheric activity, but we now regard this discrepancy as probably due mainly to our limited stellar sampl

    Is it possible to detect planets around young active G and K dwarfs?

    Get PDF
    Theoretical predictions suggest that the distribution of planets in very young stars could be very different to that typically observed in Gyr old systems that are the current focus of radial velocity surveys. However, the detection of planets around young stars is hampered by the increased stellar activity associated with young stars, the signatures of which can bias the detection of planets. In this paper, we place realistic limitations on the possibilities for detecting planets around young active G and K dwarfs. The models of stellar activity based on tomographic imaging of the G dwarf HD 141943 and the K1 dwarf AB Dor also include contributions from plage and many small random starspots. Our results show that the increased stellar activity levels present on young solar-type stars strongly impacts the detection of Earth-mass and Jupiter-mass planets and that the degree of activity jitter is directly correlated with stellar v sin i. We also show that for G and K dwarfs, the distribution of activity in individual stars is more important than the differences in induced radial velocities as a function of spectral type. We conclude that Jupiter-mass planets can be detected close-in around fast-rotating young active stars, Neptune-mass planets around moderate rotators and that Super-Earths are only detectable around very slowly rotating stars. The effects of an increase in stellar activity jitter by observing younger stars can be compensated for by extending the observational base-line to at least 100 epochs.Peer reviewe

    RACE-OC Project: Rotation and variability in the open cluster M11 (NGC6705)

    Full text link
    Rotation and magnetic activity are intimately linked in main-sequence stars of G or later spectral types. The presence and level of magnetic activity depend on stellar rotation, and rotation itself is strongly influenced by strength and topology of the magnetic fields. Open clusters represent especially useful targets to investigate the rotation/activity/age connection. The open cluster M11 has been studied as a part of the RACE-OC project (Rotation and ACtivity Evolution in Open Clusters), which is aimed at exploring the evolution of rotation and magnetic activity in the late-type members of open clusters with different ages. Photometric observations of the open cluster M11 were carried out in June 2004 using LOAO 1m telescope. The rotation periods of the cluster members are determined by Fourier analysis of photometric data time series. We further investigated the relations between the surface activity, characterized by the light curve amplitude, and rotation. We have discovered a total of 75 periodic variables in the M11 FoV, of which 38 are candidate cluster members. Specifically, among cluster members we discovered 6 early-type, 2 eclipsing binaries and 30 bona-fide single periodic late-type variables. Considering the rotation periods of 16 G-type members of the almost coeval 200-Myr M34 cluster, we could determine the rotation period distribution from a more numerous sample of 46 single G stars at an age of about 200-230 Myr and determine a median rotation period P=4.8d. A comparison with the younger M35 cluster (~150 Myr) and with the older M37 cluster (~550 Myr) shows that G stars rotate slower than younger M35 stars and faster than older M37 stars. The measured variation of the median rotation period is consistent with the scenario of rotational braking of main-sequence spotted stars as they age.Comment: Accepted by Astronomy and Astrophysics on Dec 15, 200

    Photospheric activity, rotation, and star-planet interaction of the planet-hosting star CoRoT-6

    Full text link
    The CoRoT satellite has recently discovered a hot Jupiter that transits across the disc of a F9V star called CoRoT-6 with a period of 8.886 days. We model the photospheric activity of the star and use the maps of the active regions to study stellar differential rotation and the star-planet interaction. We apply a maximum entropy spot model to fit the optical modulation as observed by CoRoT during a uninterrupted interval of about 140 days. Photospheric active regions are assumed to consist of spots and faculae in a fixed proportion with solar-like contrasts. Individual active regions have lifetimes up to 30-40 days. Most of them form and decay within five active longitudes whose different migration rates are attributed to the stellar differential rotation for which a lower limit of \Delta \Omega / \Omega = 0.12 \pm 0.02 is obtained. Several active regions show a maximum of activity at a longitude lagging the subplanetary point by about 200 degrees with the probability of a chance occurrence being smaller than 1 percent. Our spot modelling indicates that the photospheric activity of CoRoT-6 could be partially modulated by some kind of star-planet magnetic interaction, while an interaction related to tides is highly unlikely because of the weakness of the tidal force.Comment: 9 pages, 7 figures, accepted to Astronomy & Astrophysic
    • …
    corecore