NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE ."

(HRTAMT-163407) ILLINOTS OCCULTATION N80-30240 - 1978 (Illinois Univ.)
$31 \mathrm{PHCAOS/MFAOYCSCLO3A}$

ILLINOIS OCCULTATION SLMMARY I. 1977-1978

Richard Radick* and David Lien

Astronomy Department
University of Illinols
Urbana, Illinois 61801

Recpived 19 February 1980
*Presently NAS/NRC Resident Research Associate, Air Force Geophysics Laboratory, Sacramento Peak Observatory, Sunspot, New Mexico 88349.
ABSTRACTWe present results from the first two years of a program undertakento record lunar occultations at the University of lllinois PrafrieObservatory. The 64 events summarized include 30 observations of starsbrighter than 7 th magnitude, 40 reappearances, 4 angular diametermeasurements, 8 observations of binary stars, and 6 observations whichmay indicate multiplicity.

1. INTRODUCTION

This paper presents results from the first two years of a program which we have undertaken to record lunar occultations at the University of lllinois Prairie lbservatory. We have specialized in obtaining observations of events involving bright stars or objects of special interest, and reappearance timings. Consequently, 30 of the 64 events summarized here involve stars brighter than 7 th magnitude, and 40 are reappearances. Resuits from the September 1978 Hyades passage are included. Four angular diameter measurements, eight of ervations of binary stars, and six observations which may indicate multiplicity are reported. We also describe the instrumentation which we use to record occultations and the procedures for observation and data analysis which we have adopted.

[1 INSTRUMENTATION

Our observations are obtained at the Prairie Observatory 1-m reflector using a single-channel Cassegrain photometer which houses a RCA C31034A photomultiplter tube, We normally use either a Strbmgren b or y filter for spectral definition, although we occasionally use a spectral filter (here designated "FI") centered at 8575A with a FWHM of 300A for late-type stars to take advantage of the better starlight-tobackground ratio avallable from such stars at longer wavelengths. In addition, a fes: observations in 1977 were made using a filter (here designated "NB") centered near iOnOA with a FWHM of 450A. This filter has a rather peculiar passband (illustrated in Radick and Tetley, 1979), and we discontinued its use once this characteristic had been

ORIGINAL PAGE TS
OE POOR QUALITY
discovered. If necessary, count rates are linited by using neutral attenuation in conjunction with the spectral filter.

Data are recorded on magnetic tape using a computer.controlled photoelectric data acquisition system, partial descriptions of which have been published elsewhere (Nelson, 1975; Radick,1979). A block diagram of the principal components of the system as it currently exists is presented as Figure 1. This system is also used for conventional photoelectric observations. Since ocsultations are frequentiy observed as interruptions to other progratis, the controlling software has been carefully written to facilitate rapid changeover between observing modes. No hardware changes at all are required, unless the observer elects to mount a fresh tape.

The heart of the system is a Texas Instruments model 960A minicomputer. For occultation observations, a data queve is maintained in the memory of the computer. Photometric data enter the queue at 1 msec intervals as interrupt.-driven accumulator dumps and are simultaneously output to magnetic lape at approximately the same rate. The utilization of a queve as the data-storage structure pernits repeated reuse of memory space and allows the system to operate at millisecond time resolution for as long as five minutes despite the fact that the queue itself occuples only a few kiloby:es of memory. The observatory's UT clock provtdes the computer's time-of-day reference. System timing is controlled by a crystal oscillator which also drives the UT clock.

The UT clock may be set (as of January 1078) by means of a trigger
circuit which detects the lKHz WWV timing pulses. Since WWV reception at Prairie Observatory is often less than ideal, we routinely check the clock set by feeding the WWV audio into an oscilloscope which is triggered by a seconds pulse from the UT clock. By examining the WWW sigrial, it is easy to decide which of the five timing pulses was "caught." by the trigger circuit when it set the clock and from this infer whether or not the clock is running slow and, if so, by how many milliseconds.

111. REAPPEARANCE OBSERVATIONS

Although the technical difficulties of observing occultation reappearances are now being addressed by various observers (e.g. Africano and Montemayor, 1977), the great majority of timings being reported are still for disappearances. Accordingly, we have decided to emphasize reappearance timings in our program, and have developed a standard procedure for observing reappearances. We achieve telescope pointing by tracking a nearby guide star and then off-setting to the position of the target star shortiy before its emersior. The digital drive of the $1-m$ telescope makes this a simple and reilable procedure, at least if the two stars are at about the same altitude and not too far apart $\left(\leq 1^{0}\right)$ in the sky. Guide stars are selected in one of two ways: (1) If the upcoming reappearance is one of a series of such events listed in the predictions provided by the U. S. Naval Observatory, we choose a nearby star which has already reappeared (or not yet disappeared) as the guide star, current coordinates for both the guide star and the target star being mmediately available from the prediction
listing. (2) If no such guide star a s available, we select one beforehand from the SAO sky charts and difference the catalog co. ordinates of the guide star and the target star to ob*ain the offset. If the target star is not an SAO star, it is still getrerally possible to bootstrap an offset through some other SAO ster which is occulted during the evening. In this way we avoid expending telescope time measuring offsets prior to a reappearance observation, but still find that we can routinely "hit" a 16 " aperture. Irregularities in tha telescope drive plus the unexceptional seeing ($3 \mathrm{~m} 4^{\prime \prime}$) typically experienced at prairie Observatory generally preclude use of a smaller diaphragm even for disappearance observations. Consequently, this has become the preferred aperture for all our occultation observations.
IV. DATA ANALYSIS

We process our data in two stages. In the first stage the tele. scope tapes are copied onto an archive tape. The abservational traces are then scanned with the aid of an interactive graphics program which plots a selected segment of the trace, or the corresponding integral plot (as introduced by P. Bartholdi and described in Dunham et al.e. 1973), or both (one above the other). Five hundred points are plotted, each representing one, two, four, eight, or sixteen data points. Thus, the time interval plotted ranges from 0.5 to 8.0 seconds. In practice, we examine several plots of both types, noting any features characteristic of multiple stars. Finally, we extract data sets, centered on the events and corrected for coincidence losses, for input into the model-fitting progiam of the second stage. This first stage of

[^0]the analysis is usually completed soon after the observations are obtained.

The second stage is the detailed fitting of the observational traces. This is comparativeis time-intensive computationally, and we have found it convenient to accumulate fifteen or twenty data sets from stage one, waiting for a time when computer demand is comparatively light, and then process them together. The fitting prograns have been described elsewhere (Neison, 1975; Radick, 1979) and those descriptions will not be repeated here. We have found that the fitting procedure is somewhat more forgiving with respect to poor initial eximates for the model paraneters if the lunar shadow velocity is included among the fitted parameters, even for faint-star events where the fitted value of the shadow velocity cannot. have much significance. Accordingly, we generally fit each observational.trace twice, first with the shadow velocity free, and then with it fixed at the predicted value, using the best-fit parameter values determined by the first fit as the initial estimates for the second. We generally find that the best-fit values obtained from these two fits agree within their formal errors. Some events require additional analysis. For those involving binary stars, we determine values for the vecior separation and the magnitude difference. For stars which we capect to show resolvable disks we attempt to determine best-fit, amylar diameters for both the uniformlyilluminated disk and the fully limj-darkened $(\cos \theta)$ disk.

V. RI Sill. TS

Table I sunmarizes our oscultation observations for the years 1977 and 1978. Columin 1 contains a four-digit run number. The first two digits of each run number simply specify the year of the observation, while the last two order the events chronologically. The run numbers are not necessarily sequential; gaps in the sequence generally refer to observations which failed for one reason or another. The Durchmusterung and SAO numbers of the occulted stars are listed in colunns 2 and 3 , and the visual magnitudes and spectral types of the stars, drawn efther from the Naval Observatory predictions or the Bright: Star Catalog (Moffleit, 1964), appear in columns 4 and 5. The passbands of the observations are indicated in column 6. The type of event ($0=$ disappearance, $R=$ reappearance), the UT date, the observed UTC of the occultation and its formal standard error (in seconds) are listed in columns 7 through 10. A correction of 4.8 msec has been applied to the timings to compensate for the mean propagation delay of the WWV signal. Column 11 contains the starlight-.to-background ratio for each observation. We have found that this ratio represents a fairly reliable detectability criterion, as follows: any event for which this ratio equals or exceeds 0.02 should be detected, an event. for which this ratio falls in the range 0.01 to 0.02 may be detected, and one for which the ratio is less than 0.01 will probably not be detected with any certitude. This ratio may also be used to estimate how bright a companion might be and still remain undetected by the observation assuming, of course, that the geometry is favorable. We quantify this estimate in columns 12 and 13 ,

ORICINATE PA: is

Where we have adnpted the Δn_{0} and Δi_{*} notation introduced by Eitter and Beavers (1974). We defthe am_{0}, the minirum magnitude difference detectable against the lunar background, as

$$
\sin _{0}=2.5 \log \frac{(S / B)-0.02}{0.02}
$$

where S / B is the starlight-to-background ratio for the observation and 0.02 is our (conservative) detectabllity threshold estimate for this ratio. Since scintillation generally increases the notse level when the star is visible, we define Δn_{3}, the minimum magnitude difference detectable against the star plus the lunar background, as

$$
\Delta \mathrm{mm}_{*}=2.5 \log \frac{f(S / B)-0.02}{0.02}
$$

where f is an estimate for the ratio of the lunar background noise level to the noise level when the star is also visible. For those events for which S / B or $f(S / B) \leq 0.04$, we have tabulated a nominal value of zero for Δm_{0} or Δm_{*}. We emphasize that our estimates for Δm_{0} and Δm_{*} are conservative, and also point out that the 0.1 magnitude precision of the tabulated values probably overstates their relative accuracy. Listed in columns 14 and 15 are the position angle and contact angle for each observation, as conventionally durined. If an observation is of sufficient quality to provide a 1 uraningful value for the local limb slope, that value and its error rppear in columns 16 and 17. The slope is calculated using the relation

$$
\cos (\theta-\phi)=\frac{v_{0 p s}}{V_{\text {pred }}} \cos (0\rangle .
$$

where v obs and v pred are the observed and predicted lunar shadow velocities, respectively, 0 is the contact angle, and ϕ is the local limb slope. The algebrate stgn astigned to the slope is such that the sum of the slope and position angle defines the direction of resolution ("aspect") of the observation. This sign may or may not agree with the one speciftad by the convention adopted by the University of Texas group: if not, this fact is indicated by an asterisk in column 16. If $\frac{V_{\text {obs }}}{Y_{\text {pred }}} \cos (\theta)$ is greater than unity, the value tabulated for the slope is the contact angle (adjusted to be less thon 180°), and is enclosed in parentheses. Asterisks indicating notes appear in column 18. In addition, an "a" in column 18 \{ridicates observations which resulted in angular diameter measurements, details of which appear in Table ll. Likewise, a "b" indicates an event involving a binary or multiple star, in which case the entries of Table l refer etther to the primary, if one can be distingutshed, or the first everit to occur, if one cannot. Additional detalls for these binary star observations are presented as Table 111.

Table Il contains additional information for those observations which involved resolved stars. The run number, Durchnusterung number, SAO number, and Bright Star Catalog number for each star appear in columns 1 through 4. The best-fit value for the angular diameter and its formal standard error, assuning a uniformlymilluminated disk, are
listed in columns 5 and 6. Anyular dlameters corresponding to other limb darkening laws are readily scaled from these values. Notes are flagged in columin 7.

Two of the angular diameters reported in Table II are less than two milliarcsec. We realize that resolving dianeters smaller than two milliarcsec by means of occultation measurement is difficult, and we admit that, in the case of Run 7841 (SAO 93950), the resolution may, Indeed, be spurious, since the standard error of the measurement is comparable to the measurement itwelf. In the other case (Run 7840 : SAO 93955), we are confident that the resolution is real. The fitting program has successfully demonstrated its ability to distinguish a resolved source from a polnt source when presented with a high-quality trace (Run $7708 \times$ SAO 162512, fllustrated as Ftgure 2), but it has consistently refused to "change its mind" about Run 7840 despite being offered a variety of inducements.

Finally, rable III contains additional information for those observations which clearly indicated binary or multiple stars. The run number, Durchritusterung number, SAO number, and a binary star identification number (if avallable) are listed in column 1 through 4. The passband of the observation is tabulated in column 5 . The bestfit value for the observed magnitude difference and its formal standard error are listed in colums 6 and 7 . The vector separation and its error (in arcseconds) appear in (wlumns 8 and 9 , while the aspect of the observation (which is the pomilion angle corrected for the local limb slope) and its error are listed in columns 10 and 11 . Notes are flagged in coluinn 12.

ACKNCWI EDGEMENTS

To Mark Nelson, Michael Faimari, and Scott Tremaine, who contributed significantly to our project (perhaps without realizing it); to Frank Fekel, David Dunham, Tom Barnes, Nat White, and Willett Beavers, with whom we have compared results, often prior to gublica:tion; to Ed Olson, Bill Hartkopf, Bill Tetley, John Dickel, and the other astrononers at the University of lllinois, all of whom have efther helped us with our observations at one time or another or relinquished telescope time in our behalf; and, espectally, to Tom Van Flandern, Peter Espenshied and the other members of the U. S. Naval Observatory staff who provide the predictions which make which make our observations possible, we express our gratitude. This work was supported In part by the National Aeronautics and Space Administration under grant NGR14-005-176. Funds for computing were provided by the University of Illinols Research Board.

ORTGINAC PAGE IS

$\begin{aligned} & \text { W } \\ & \underset{\sim 口}{\mathbf{O}} \end{aligned}$	＊＊	＊＊\quad－	象		－
4	80	－Minct	14		m
	$\stackrel{3}{4}$		i		$\stackrel{M}{\mathbf{O}}$
$\mathscr{6}$					
$\underline{ }$		空各地品品			mision
5	frayded	Mimiction mim		웅옹옹응	
5^{e}	Gident	giming mi	mscsect nés simo		NO응웅
$\stackrel{\circ}{\hat{n}}$	cterab	からが心	joces	N～ONN ；ócó	
－	5tyent coses	ninusum 	ócós	 ócóco	M웅 óóo
			ongom	茴品紫会 Nósú	
$\stackrel{\text { vo }}{\substack{2}}$		気它的离		天名品出	内人
号			Mn\％\％		
总	cionema		¢\％880㐌	它分句合多	888888
	Otsmers	m大的が号	天下里里呙	只只荿只只	
$\begin{aligned} & \text { 世 } \\ & \text { \% } \\ & \hline \end{aligned}$	585	象象號苞		事気点点角	
		N：NA以	只号思心	NのNNN	NN心NN
$\begin{aligned} & \frac{5}{4} \\ & \frac{1}{2} \end{aligned}$	260．4\％	の日ctes．	cosedex		
$\stackrel{\ddagger}{i}$					可かman
n					
$\begin{gathered} 7 \\ \hline \end{gathered}$			＇Smaty －n \boldsymbol{x}	$\infty 0 \infty \times \infty$ 	Nungy moino oi
弱采			躴票品 品品象		发
\cdots		 			
\％				$\frac{9}{1} 9 \frac{9}{1} 9$	๓～のロのロ
运安			忩笑式品嘽会置品品		

7822	-	150247	6.6	K0	FI	2	27	Apr 38	29 45 38.898	0.003	0.10	1.5	3.3	323.5	124.0	-2.0	- 0
7823	-i9 4939	751245	8.7	E8	5	P.	27	An-78	595503.788	$\because 009$	0.02	0.0	0.6	200.9	165.3		
7824	-194944	151255	7.5	82	b	2	27	Apr 78	if 14.22 .762	0.002	0.07	1.0	9.8	280.1	166.2		
7825	-184885	161278	6.6	B5	Fl	9	27	Apr $\mathrm{S}^{\text {S }}$	10 3i 27.696	0.005	0.07	1.6	$2=0$	319.3	\$20.1	Z.シ*	-0
7826	+171177	095407	8.9	AU	y	2		My 75	0! 53595%	-5.54	0.30	2.9	2.3	155.	-57.8		
7827	+1] 1187	095448	8.8	Ha	Fi	E	$1:$	Miy 78	022243.546	0.001	2.27	5.7	4.5	85.4	12.9	112.91	0.4
7829	-18 5115	151935	6.9	$\underline{0}$	y	2	25	dixy 78	074153.541	0.005	0.04	0.0	0.0	279.3	156.2		
7829	-115690	154711	5.8	K0	y	R	23	M-y 18	$4835 \quad 09 . \pm 31$	0.002	0.11	1.0	1.6	231.5	- 159.6	-i.0	5.3
7830	-10 5783	164715	9.6	K0	y	F	28	Hay 73	085309.370	0.009	0.02	0.0	3.0	291.5	139.8		
7831	-10 5785	164717	6.50	B3	y	R		ity 78	090439.412	0.002	0.11	1.6	1.3	273.5	857.4	0.0̂*	2.5
7832	-19 4995	151453	8.9	$\underline{\mathrm{K}}$	Fi	D	75	Aug :3	030115.830	0.015	0.02	G.C	3.0	93.2	-5.3		
7833	-195007	$161 \leq 82$	8.3	88	b	0		Aug 23	040808.752	0.005	0.06	0.8	3.8	79.5	4.9		
7834	-18 498.	161540	5.76	gK0	fl	0	15	Aug 78	055012.138	0.001	0.30	2.9	2.5	49.7	32.1	-1. 1	1.3
7835	-16 5617	163641	7.0	A0	y	0	17	Aug 78	025028.252	0.007	0.02	0.0	0.0	105.1	-27.0		
7836	-165534	163675	9.1	M	Fi	0	17	Aug 38	041811.148	0.012	0.01	0.0	0.0	100.7	-26.0		
7837	-15 5732	163740	6.9	K0	Fi	0		Aug 78	063617.324	0.001	0.13	1.9	1.8	69.6	1.7		
7838	-15 5743	163771	5.30	86111	y	0	17	Aug 78	073930.901	0.001	0.11	1.6	1.4	63.0	8.1		
7839	+150621	093925	6.46	6F5	y	R	22	Sep 78	053421.274	0.002	0.12	1.7	1.4	240.2	-164.7	-0.7	2.6
7840	+150631	093955	3.85	K01II	FI	R	22	Sep 78	065118.924	0.001	1.57	4.7	3.3	192.9	-117.9	3.8	$0 . ?$
7841	+160605	093950	5.10	R2111	y	R	22	Sep 78	071244.923	0.001	0.48	3.4	3.2	295.8	139.0	-0.6*	1.6
7842	+150533	093951	6.6	F8		8		Sep 78	073242.981	0.003	0.08	3.2	0.9	241.1	-166.1		
7843	+150635	053969	8.1	Mz	$F I$	R	22	Sep 78	081002.286	0.003	0.09	1.4	1.2	227.9	-152.6		
7844	+15 0637	093975	4.78	ATV	y	R		Sep 78	082821.457	0.001	0.64	3.7	3.4	226.3	-150.7	4.8	3.0
78.45	+150621	c94004	5.5	50	y	R	22	Sep 78	103433.325	0.002	0.14	1.9	1.9	217.1	-137.5	-8.3.	1.1
7845	+160629	094027	0.88	K511]	F1	R	22	Sep 78	122537.011	0.009	0.16	2.1	1.8	286.4	-162.0		

9\％\％	～	$\stackrel{\infty}{\sim}$	
	$\underset{i}{*}$	$\stackrel{\leftrightarrow}{4}$	
No ogryro			
울뭄웅	Mry	OOCOM	
miñóso			
		MeN．	
00000	óooco		
○ルプー 	\therefore 灾安品品	 ゅíní	
ロN\％			
9）${ }^{\text {grow }}$	¢889 ¢ ¢ ¢	吕今句	
¢		¢ ¢ ¢ ¢ ¢	
のむ心が		6以号め	
$x \times 0$ ¢ ¢ \times	craterex	x coix	
$\boldsymbol{n \rightarrow \boldsymbol { r a r }}$		吅河島	
		¢ 0 \％	ORIGINAL MUTE IS OF POOR Qu．ali＇TY
禺云名品品 		둥	
〒ャッロッチ			
呙品㗐品只	 		

$\begin{aligned} & \text { Rur } \\ & \text { number } \end{aligned}$	Number	SAO number	HR Number	Angular Diameter (milliarcsec)	Standard Error	rotes
3	-153029	15348?	7776	3.13	0.39	
7840	+15 0631	093955	1411	1.49	0.45	
7847	$+160605$	093950	1407	1.63	1.07	
1865	+171479	056407	2631	5.98	1.17	*

	- Wo m =in 80809688
	ocososoo

	óocióoć

Einary Identification	passbanc
ADS i3717	b
Fin 358	y
ADS 14099	y
Fin 342	y
AOS 3243	y
Yui 24	y
	y

NOTES ON TABLE 1

7701. Double-lined spectroscopic binary member of the Hyades, with $\Delta m=0.4 \quad$ (Batten et al. 1978). The components were seperated by some 0.01 at the epoch of this observation and could perhaps have been resolved. However, there is no evidence of two stars on this trace, due perhaps to unfavorable geometry and/or a rather poor-quality record.
7702. 68 Tau $=\operatorname{ADS}$ 3206. A member of the Hyades, The companion, some 77" distant from the primary according to the index Catalog of Double Stars (IDS) (Jeffers et al., 1963), did not fall within our photometer diaphragm. Observed through clouds.
7703. $44=\rho^{\prime} \mathrm{sgr}$. Reported as double by some visual observers. Neither our observation nor three other photoelectric observations of this star with which we are familiar support this claim. Illustrated as Figure 2.
7704. A particularly difficult trace to interpret. Possibly a close double, with $\Delta m \simeq 1.2$ and a vector separation $\simeq 0.01$ at $P A=$ 139 ${ }^{\circ}$. An attempt to fit for the angular diameter yielded a (probably spurious) value of $9.6: 1.3 \mathrm{milli}$ larcsec for a uniform disk, much larger than the 3.0 milliarsec expected. The event occured 18 seconds before the predicted time, suggesting that 1 limb features may have played a role in creating the anomalous features of this record.
7705. Y Sir. Illustrated as figure 3.
7706. 9 日 - Cap. Detafls of this observation have been published elsewhere (Radick, 1979).
7707. V Tau.
7708. 29 Cnc. Observed through clouds.
7709. Possibly double, with $A m \simeq 1.0$ and a vector separation $\simeq 0.005$ at $P A=296^{\circ}$.
7710. Possibly double, with $\Delta m \simeq 1.5$ and a vector separation $\simeq 0$. "62 at PA 281°.
7711. Possibly double, with $\Delta m \approx 1.7$ and a vector separation $\simeq 0.008$ at PA 280°.
7712. ADS 11232. Severa! companions, none closer than $22^{\prime \prime}$ from the primary according to the IDS, fell outside our photometer diaphragm.
7713. Strong distortion, probably due to scintillation, present in this record.
7714. ADS 11776. The visual conpanion, some $18^{\prime \prime}$ distant from the primary according to the IDS, fell outside our photometer aperture. Just possibly double, with $\Delta m \simeq 1.3$ and a vector separation $\simeq 0.15$ at $P A=99^{\circ}$. Observed through overcast.
7715. Essentially fringeless, but observed near horizon.
7716. $14=\mathrm{r}$ Cap. No evidence of the faint companion to the secondary reported by Africano et al... (1975), although the quality of the record is inadequate to support a firm statement on this point. An intensity drop did occur before the disappearance of the primary, corresponding l. $0 \Delta \mathrm{~mm}=0.9$ and a vector separation $\simeq 0.008$ at $P A 243^{\circ}$ relative to the primary. Doubtful.
7717. 70 Tau. Binary member of Hyades.
7718. 77 : 0^{\prime} Tou. One of the Hyades giants, and a recently discovered binary (Griffin and Gunn, 1977; Beavers and Eitter, 1979). The companton has been seen on several occastons since it was first reported. Illustrated as Figures 4 and 5.
7719. 75 Tau. Also observed as Run 7856. No evidence of a compantori, contrary to the report of Fekel et al., 1980.
7720. Binary member of Hyades.
7721. Member of Hyades. Reported as double by some visual observers. Our observation does not support; this claill.
7722. $87=$ a Tau (Aldebaran). Daytine reappearance observation was only partially successful, as the star fell almost outside our photomaser diaphragn. Accordingly, no attempt has been made to derive an angular dianeter fron this record.
7723. 111 Tau. The visual companion, some $86^{\prime \prime}$ distiant from the primary according to the IDS, fell outside our photometer diaphragm.
7724. Time tabulated is for the first star to reappear. The second star appeared at 9:22:50.244 ± 0.002. The local limb slopes derived from the two events are $3^{\circ} .7$ and $5^{\circ} .5$.
7725. $48=\lambda$ Cap.
7726. Relatively large timing uncertalnty due to unintentional 5-bit truncation of observational data, resulting in poor intensity resolution.
7727. 130 Tau.

1853. 26 Gem. Close binary. Two level changes occured after the reappearance of the primary. However, the quality of the record is not very good, and an April 1979 observation of another occultation of this star showed no features corresponding to these.

7856. 75 Tau. Also observed as Run 7841.

Original page is
 OF POOR QUALITY

notes in lable ll
7717. Other measurements of the angular diameter are: 3.05 ± 0.12 (Ridgway et al. 1971) and 2.8 ± 0.1 (inferred) (Africano et al. . 1978) for a uniformly-1lluminated disk.
7840. White (1979) measured $2.3+0.3$ (inferred) for the uniform disk, 7841. An attempt to derive an anyular diameter from Run 7856, which was of substantially poorer quality than Run 7841, showed the Run 7856 trace to be indistinguishable from one produced by a point source.
7865. Morbey et al. 2 (19/8) measured $6.5: 0.5$ for the uniform disk, but indicate that they suspect their trace is distorted.

NOTES ON TABLE. III

7716. The separation and position angle listed in the IDS are 0." 8 and 89°.
7717. The separation and posititon angle listed in the IDS are 0."I and 129°.
7718. The separation and position angle ($0.430,112^{\circ} .9$) specified by the orbital elements of Heintz (1978) are consistent with this observation. The elements of Baize (1953) place the secondary west of the primary at the epoch of this observation, contrary to what we observed.
7719. The separation and position angle ($0.1130,321^{\circ} 0$) specified by the orbital elements of Finsen (1978) are consistent with this observation, as is the September 1978 occultation observation of Beavers and Eitter (1979). However, occultation observations obtained in March 1979 (Africano and Radick, 1980; Fekel et al.e 1980) clearly indicate that the secondary is east of the primary, not west. The most iikely explanation is that the analyses of the September 1978 observations were prejudiced by noise distorting two nearly colncident events.
7720. The separation and position angle ($0.128,82^{\circ} .6$) spectfied by the orbttal elements of van den Bos (1956) are in good agreement with this observation.
7721. The separation and position angle 11sted in the IDS are 0."5 and 139°

REFERENCES

Africano, J. L., Cobb, C. L., Dunham, D. W., Evans, D. S., Fekel, F. C., and Vogt, S. S. (1975). Astron.J. 80, 689.

Africano, J. L., Evans, D. S., Fekel, F. C., Smith, B. W., and Margan, C. A. (1978). Aitron. J. 83, 1100.

Africano, J. L., and Montemayor, T. (1977). As'tron. J. 82, 640.
Africano, J. L., and Radick, R. R. (1980). In preparation.
Baize, P. (1953). J. Obs. 36, 168.
Batten, A. H., Fletcher, J. M., and Mann, P. J. (1978). Publ. Dominion Astrophys. Obs. 15, 121.

Beavers, W. I., and Eitter, J. J. (1919). Astrophys. J. Lett. 228, 1.111.

Dunham, D. W. Evans, D. S., McGraw, J. T., Sandimann, W. H., and Wells,
D. C. (1973). Astron. U. 78,482.

Eitter, J. J. and Beavers, W. 1. (1974). Astrophys. J. Suppl. 28, 405.
Fekel. F. C., Montemavor, T. J., Barnes, T. G., and Moffett, Y. J. (198v). Preprint.

Finsen, W. S. (1978). IAU Comm. 26 Circ d' Inf.e. No. 74. Griffin, R. F., and Gunn J. E. (19??). Astron.N. 8\%, 176. Heintz, W. D. (1978). IAU COnm. 26 Circ di Inf. No. 75. Hoffleit, D. (1964). Catalog of Bright Stars (Yale University Obs., New Haven, (T).

Jeffers, H., van den Bos, W. H., and Greeby, F. M. (1963). "Index Catalogue of Visual Double Stars, 1961.0" Publ. Lick Obs. Mt. Hamilton. 21.

Morbey, C. L., Fletcher, J. M., and Edwards, G. (1978). Journ. Royal Astron. Soc. Canadd 72,305.

Nelson, M. R. (1975). Astrophys. J. 198, 127.
Radick, R, R. (1979), Astron. J. 84, 257.
Radick. R. R. and Totley, W. S. (1979). Lcarus $40,67$.
Ridgway, S. T., Wells, D. C. and Joyce, R. R. (1977). Astron. J. 82, 414.
van den Bos, W. H. (1956) Union Obs. Ctrc. 115, 281. White, N. M. (1919). Astron. J. 84, 872.

FIGIRF : AltIONS

Figure 1 Block diagran of data amu:gition systen.
Figure 2 SAO 162512 occultiat fon.
Figure 3 SAO 161376 occultation.
Figure 4 SAO 93955 occultation. The secondary reappeared about t., 4
second before the primary.
Figure 5 SAO 93955 occultation, prinsty only.

Oprivir parn
On
\because

Mountain Winds - Revisited

Eugene Isaacson
Courant Inst. Math. Sci.
New York University
New York, New York 10012
\section*{Gideon Zwas}
Div. of Appl. Math.
Tel-Aviv University
Tel-Aviv, Israel

Work was supported in part under NASA Grant NSG-5034 and U.S. DOE Contract No. DE-ACO2-76ER03077.

The first author acknowledges a pleasant, brief, and productive sojourn at G. Golub's former Serra House branch of the Computer Sciences Department of Stanford University where some of this writing took placc.

[^0]: Okhoix.Do PAOF is
 OE ROOR QUE:A:IY

