22 research outputs found

    The concluding chapter: Recircumscription of Goodenia (Goodeniaceae) to include four allied genera with an updated infrageneric classification

    Get PDF
    © 2020. Close scrutiny of Goodenia (Goodeniaceae) and allied genera in the \u27Core Goodeniaceae\u27 over recent years has clarified our understanding of this captivating group. While expanded sampling, sequencing of multiple regions, and a genome skimming reinforced backbone clearly supported Goodenia s.l. as monophyletic and distinct from Scaevola and Coopernookia, there appears to be no synapomorphic characters that uniquely characterise this morphologically diverse clade. Within Goodenia s.l., there is strong support from nuclear, chloroplast and mitochondrial data for three major clades (Goodenia Clades A, B and C) and various subclades, which lead to earlier suggestions for the possible recognition of these as distinct genera. Through ongoing work, it has become evident that this is impractical, as conflict remains within the most recently diverged Clade C, likely due to recent radiation and incomplete lineage sorting. In light of this, it is proposed that a combination of morphological characters is used to circumscribe an expanded Goodenia that now includes Velleia, Verreauxia, Selliera and Pentaptilon, and an updated infrageneric classification is proposed to accommodate monophyletic subclades. A total of twenty-five new combinations, three reinstatements, and seven new names are published herein including Goodenia subg. Monochila sect. Monochila subsect. Infracta K.A. Sheph. subsect. nov. Also, a type is designated for Goodenia subg. Porphyranthus sect. Ebracteolatae (K. Krause) K.A. Sheph. comb. et stat. nov., and lectotypes or secondstep lectotypes are designated for a further three names

    Phylogeny, Adaptive Radiation, and Historical Biogeography in Bromeliaceae: Insights from an Eight-Locus Plastid Phylogeny

    Get PDF
    Premise: Bromeliaceae form a large, ecologically diverse family of angiosperms native to the New World. We use a bromeliad phylogeny based on eight plastid regions to analyze relationships within the family, test a new, eight-subfamily classification, infer the chronology of bromeliad evolution and invasion of different regions, and provide the basis for future analyses of trait evolution and rates of diversification. Methods: We employed maximum-parsimony, maximum-likelihood, and Bayesian approaches to analyze 9341 aligned bases for four outgroups and 90 bromeliad species representing 46 of 58 described genera. We calibrate the resulting phylogeny against time using penalized likelihood applied to a monocot-wide tree based on plastid ndhF sequences and use it to analyze patterns of geographic spread using parsimony, Bayesian inference, and the program S-DIVA. Results: Bromeliad subfamilies are related to each other as follows: (Brocchinioideae, (Lindmanioideae, (Tillandsioideae, (Hechtioideae, (Navioideae, (Pitcairnioideae, (Puyoideae, Bromelioideae))))))). Bromeliads arose in the Guayana Shield ca. 100 million years ago (Ma), spread centrifugally in the New World beginning ca. 16-13 Ma, and dispersed to West Africa ca. 9.3 Ma. Modern lineages began to diverge from each other roughly 19 Ma. Conclusions: Nearly two-thirds of extant bromeliads belong to two large radiations: the core tillandsioids, originating in the Andes ca. 14.2 Ma, and the Brazilian Shield bromelioids, originating in the Serro do Mar and adjacent regions ca. 9.1 Ma

    Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae

    Full text link

    Jabailyetal_NRR

    No full text
    Genetic samples taken in the field and vouchered at PERTH. Genomic skimming accomplished on Illumina Hiseq 2500 rapid run with 150 bp paired-end chemistry. Filtered and reference-guided assembled against Verreauxia sequence

    Data from: Employing hypothesis testing and data from multiple genomic compartments to resolve recalcitrant backbone nodes in Goodenia s.l. (Goodeniaceae)

    No full text
    Goodeniaceae is a primarily Australian flowering plant family with a complex taxonomy and evolutionary history. Previous phylogenetic analyses have successfully resolved the backbone topology of the largest clade in the family, Goodenia s.l., but have failed to clarify relationships within the species-rich and enigmatic Goodenia clade C, a prerequisite for taxonomic revision of the group. We used genome skimming to retrieve sequences for chloroplast, mitochondrial, and nuclear markers for 24 taxa representing Goodenia s.l., with a particular focus on Goodenia clade C. We performed extensive hypothesis tests to explore incongruence in clade C and evaluate statistical support for clades within this group, using datasets from all three genomic compartments. The mitochondrial dataset is comparable to the chloroplast dataset in providing resolution within Goodenia clade C, though backbone support values within this clade remain low. The hypothesis tests provided an additional, complementary means of evaluating support for clades. We propose that the major subclades of Goodenia clade C (C1–C3 + Verreauxia) are the result of a rapid radiation, and each represents a distinct lineage

    Jabailyetal_COS alignments

    No full text
    Genetic samples taken in the field and vouchered at PERTH.Zip file of alignments of 85 Conserved ortholog sets. Illumina library with paired-end reads. HybPiper pipeline with default settings (Johnson et al., 2016) to assemble reads corresponding to COS loci based on the probe set published by Mandel et al. (2014

    Jabailyetal_G3PDH

    No full text
    Genetic samples taken in the field and vouchered at PERTH. Genomic skimming accomplished on Illumina Hiseq 2500 rapid run with 150 bp paired-end chemistry. Filtered and reference-guided assembled against Verreauxia sequence

    Data from: Utilizing next-generation sequencing to resolve the backbone of the Core Goodeniaceae and inform future taxonomic and floral form studies

    No full text
    Though considerable progress has been made in inferring phylogenetic relationships of many plant lineages, deep unresolved nodes remain a common problem that can impact downstream efforts, including taxonomic decision-making and character reconstruction. The Core Goodeniaceae is a group affected by this issue: data from the plastid regions trnL-trnF and matK have been insufficient to generate adequate support at key nodes along the backbone of the phylogeny. We performed genome skimming for 24 taxa representing major clades within Core Goodeniaceae. The plastome coding regions (CDS) and nuclear ribosomal repeats (NRR) were assembled and complemented with additional accessions sequenced for nuclear G3PDH and plastid trnL-trnF and matk. The CDS, NRR, and G3PDH alignments were analyzed independently and topology tests were used to detect the alignments’ ability to reject alternative topologies. The CDS, NRR, and G3PDH alignments independently supported a Brunonia (Scaevola s.l. (Coopernookia (Goodenia s.l.))) backbone topology, but within Goodenia s.l., the strongly-supported plastome topology (Goodenia A (Goodenia B (Velleia + Goodenia C))) contrasts with the poorly supported nuclear topology ((Goodenia A + Goodenia B) (Velleia + Goodenia C)). A fully resolved and maximally supported topology for Core Goodeniaceae was recovered from the plastome CDS, and there is excellent support for most of the major clades and relationships among them in all alignments. The composition of these seven major clades renders many of the current taxonomic divisions non-monophyletic, prompting us to suggest that Goodenia may be split into several segregate genera

    CYC2 Alignment

    No full text
    Alignment of BLAST results from all genome skimming datasets for CYC2-like genes. Each line represents the accumulative BLAST results from a single species
    corecore